首页 | 本学科首页   官方微博 | 高级检索  
     


Novel asymmetric michael addition of alpha-cyanopropionates to acrolein by the use of a bis(oxazolinyl)phenylstannane-derived rhodium(III) complex as a chiral Lewis acid catalyst
Authors:Motoyama Yukihiro  Koga Yoshiyuki  Kobayashi Kouji  Aoki Katsuyuki  Nishiyama Hisao
Affiliation:School of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan. motoyama@tutms.tut.ac.jp
Abstract:The rhodium complex prepared in situ by simply mixing [[RhCl(c-octene)2]2] and [(Phebox)SnMe3] (1) (Phebox = 2,6-bis(oxazolinyl)phenyl) was found to serve as an efficient catalyst for the asymmetric Michael addition of alpha-cyanopropionates (4) to acrolein under mild and neutral conditions. In the present catalytic system, both the temperature of catalyst preparation and the order of the addition of the substrates were very important for the catalytic efficiency and enantioselectivity. Detailed mechanistic studies of this catalytic system revealed that the [(Phebox)RhIII(SnMe3)Cl] complex (9), generated by oxidative addition of [[RhCl(c-octene)2]2] to 1, is an active catalyst and the turnover number (TON) of the present actual catalyst existing in a reaction mixture is greater than 10,000. The obtained (R) stereochemistry of the Michael adducts 5 can be explained by N-bonded enol intermediates C', which are formed by enolization of 4 bound to the Lewis acidic rhodium complex 9. We also found that the active catalyst 9 gradually decomposed in the presence of the remaining [[RhCl(c-octene)2]2] in the reaction mixture to form the catalytically nonactive [(Phebox)RhCl2] fragment A, whose structure was characterized by an X-ray crystallographic study after converting to the tBuNC complex 10.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号