首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of DGT techniques for measuring inorganic uranium species in natural waters: Interferences,deployment time and speciation
Authors:Geraldine SC Turner  Graham A Mills  Peter R Teasdale  Jonathan L Burnett  Sean Amos  Gary R Fones
Institution:1. School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire, PO1 3QL, UK;2. School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael''s Building, White Swan Road, Portsmouth, Hampshire, PO1 2DT, UK;3. Environmental Futures Centre, Griffith University, Gold Coast Campus, Queensland 4222, Australia;4. AWE Aldermaston, Reading, Berkshire, RG7 4PR, UK
Abstract:Three adsorbents (Chelex-100, manganese dioxide MnO2] and Metsorb), used as binding layers with the diffusive gradient in thin film (DGT) technique, were evaluated for the measurement of inorganic uranium species in synthetic and natural waters. Uranium (U) was found to be quantitatively accumulated in solution (10–100 μg L−1) by all three adsorbents (uptake efficiencies of 80–99%) with elution efficiencies of 80% (Chelex-100), 84% (MnO2) and 83% (Metsorb). Consistent uptake occurred over pH (5–9), with only MnO2 affected by pH < 5, and ionic strength (0.001–1 mol L−1 NaNO3) ranges typical of natural waters, including seawater. DGT validation experiments (5 days) gave linear mass uptake over time (R2 ≥ 0.97) for all three adsorbents in low ionic strength solution (0.01 M NaNO3). Validation experiments in artificial sea water gave linear mass uptake for Metsorb (R2 ≥ 0.9954) up to 12 h and MnO2 (R2 ≥ 0.9259) up to 24 h. Chelex-100 demonstrated no linear mass uptake in artificial sea water after 8 h. Possible interferences were investigated with SO42− (0.02–200 mg L−1) having little affect on any of the three DGT binding layers. PO43− additions (5 μg L−1–5 mg L−1) interfered by forming anionic uranyl phosphate complexes that Chelex-100 was unable to accumulate, or by directly competing with the uranyl species for binding sites, as with MnO2 and the Metsorb. HCO3 (0.1–500 mg L−1) additions formed anionic species which interfered with the performance of the Chelex-100 and the MnO2, and the Ca2+ (0.1–500 mg L−1) had the affect of forming labile calcium uranyl species which aided uptake of U by all three resins. DGT field deployments in sea water (Southampton Water, UK) gave a linear mass uptake of U over time with Metsorb and MnO2 (4 days). Field deployments in fresh water (River Lambourn, UK) gave linear uptake for up to 7 and 4 days for Metsorb and MnO2 respectively. Field deployment of the Metsorb-DGT samplers with various diffusive layer thicknesses (0.015–0.175 cm) allowed accurate measurements of the diffusive boundary layer (DBL) and allowed DBL corrected concentrations to be determined. This DBL-corrected U concentration was half that determined when the effect of the DBL was not considered. The ability of the DGT devices to measure U isotopic ratios with no isotopic fractionation was shown by all three resins, thereby proving the usefulness of the technique for environmental monitoring purposes.
Keywords:Diffusive gradients in thin films  Uranium  Chelex-100  Manganese dioxide  Metsorb  Titanium dioxide  Natural waters
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号