首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: A review
Authors:Farhan AhmadAuthor Vitae  Syed A Hashsham
Institution:Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
Abstract:Point-of-care (POC) genetic diagnostics critically depends on miniaturization and integration of sample processing, nucleic acid amplification, and detection systems. Polymerase chain reaction (PCR) assays have extensively applied for the diagnosis of genetic markers of disease. Microfluidic chips for microPCR with different materials and designs have been reported. Temperature cycling systems with varying thermal masses and conductivities, thermal cycling times, flow-rates, and cross-sectional areas, have also been developed to reduce the nucleic acid amplification time. Similarly, isothermal amplification techniques (e.g., loop-mediated isothermal amplification or LAMP), which are still are emerging, have a better potential as an alternative to PCR for POC diagnostics. Isothermal amplification techniques have: (i) moderate incubation temperature leading to simplified heating and low power consumption, (ii) yield high amount of amplification products, which can be detected either visually or by simple detectors, (iii) allow direct genetic amplification from bacterial cells due to the superior tolerance to substances that typically inhibit PCR, (iv) have high specificity, and sensitivity, and (v) result in rapid detection often within 10–20 min. The aim of this review is to provide a better understanding of the advantages and limitations of microPCR and microLAMP systems for rapid and POC diagnostics.
Keywords:Polymerase chain reaction  Loop-mediated isothermal amplification  Miniaturized nucleic acid analysis system  Point-of-care  Diagnostics  Microfluidics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号