首页 | 本学科首页   官方微博 | 高级检索  
     


Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds
Authors:Xolile Fuku  Faiza IftikarEuodia Hess  Emmanuel IwuohaPriscilla Baker
Affiliation:SensorLab, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
Abstract:An electrochemical method based on a cytochrome c biosensor was developed, for the detection of selected arsenic and cyanide compounds. Boron doped diamond (BDD) electrode was used as a transducer, onto which cytochrome c was immobilised and used for direct determination of Prussian blue, potassium cyanide and arsenic trioxide. The sensitivity as calculated from cyclic voltammetry (CV) and square wave voltammetry (SWV), for each analyte in phosphate buffer (pH = 7) was found to be in the range of (1.1–4.5) × 10−8 A μM−1 and the detection limits ranged from 4.3 to 9.1 μM. The biosensor is therefore able to measure significantly lower than current Environmental Protection Agency (EPA) and World Health Organisation (WHO) guidelines, for these types of analytes. The protein binding was monitored as a decrease in biosensor peak currents by SWV and as an increase in biosensor charge transfer resistance by electrochemical impedance spectroscopy (EIS). EIS provided evidence that the electrocatalytic advantage of BDD electrode was not lost upon immobilisation of cytochrome c. The interfacial kinetics of the biosensor was modelled as equivalent electrical circuit based on electrochemical impedance spectroscopy data. UV–vis spectroscopy was used to confirm the binding of the protein in solution by monitoring the intensity of the soret bands and the Q bands. FTIR was used to characterise the protein in the immobilised state and to confirm that the protein was not denatured upon binding to the pre-treated bare BDD electrode. SNFTIR of cyt c immobilised at platinum electrode, was used to study the effect of oxidation state on the surface bond vibrations. The spherical morphology of the immobilised protein, which is typical of native cytochrome c, was observed using scanning electron microscopy (SEM) and confirmed the immobilisation of the cytochrome c without denaturisation.
Keywords:Toxicity   Cytochrome c (cyt c)   Boron doped diamond (BDD)   Diffusion coefficients
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号