首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cross-linked polyacrylamide gel electrophoresis of single-stranded DNA for microfabricated genomic analysis systems
Authors:Ugaz Victor M  Brahmasandra Sundaresh N  Burke David T  Burns Mark A
Institution:Department of Chemical Engineering, The University of Michigan, Ann Arbor, 48109-2136, USA.
Abstract:Microfabricated devices are poised to offer inexpensive self-contained alternatives to conventional benchtop-scale laboratory equipment for performing a variety of important DNA analysis assays. In order to realize the dramatic cost savings possible through photolithographic fabrication techniques, these devices must occupy an extremely compact footprint on the silicon wafer. This requirement implies that electrophoretic separations must be performed over ultrashort distances. Employing cross-linked polyacrylamide gels in place of conventional uncross-linked sieving media offers a convenient strategy to achieve this goal. In this paper, we show how the increased resolving power offered by cross-linked polyacrylamide gels, along with improved sample injection techniques, can be exploited to enhance separation performance in microscale systems. We use these techniques to perform high-resolution gel electrophoresis of single-stranded DNA fragments in microfabricated devices over separation distances of 1.5 cm or less. The results presented here are in agreement with theoretical predictions and suggest that it is possible to perform DNA sequencing on compact microchips. More importantly, the separation performance demonstrated in this work is already more than adequate to perform a number of important genomic assays imposing less stringent resolution requirements than sequencing. Successfully adapting even a few of these assays to the microdevice format has the potential to provide a new generation of inexpensive and portable devices suitable for direct end-user applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号