首页 | 本学科首页   官方微博 | 高级检索  
     


In Silico and In Vitro Antimalarial Screening and Validation Targeting Plasmodium falciparum Plasmepsin V
Authors:Xin Ji  Zhensheng Wang  Qianqian Chen  Jingzhong Li  Heng Wang  Zenglei Wang  Lan Yang
Abstract:Malaria chemotherapy is greatly threatened by the recent emergence and spread of resistance in the Plasmodium falciparum parasite against artemisinins and their partner drugs. Therefore, it is an urgent priority to develop new antimalarials. Plasmepsin V (PMV) is regarded as a superior drug target for its essential role in protein export. In this study, we performed virtual screening based on homology modeling of PMV structure, molecular docking and pharmacophore model analysis against a library with 1,535,478 compounds, which yielded 233 hits. Their antimalarial activities were assessed amongst four non-peptidomimetic compounds that demonstrated the promising inhibition of parasite growth, with mean IC50 values of 6.67 μM, 5.10 μM, 12.55 μM and 8.31 μM. No significant affection to the viability of L929 cells was detected in these candidates. These four compounds displayed strong binding activities with the PfPMV model through H-bond, hydrophobic, halogen bond or π-π interactions in molecular docking, with binding scores under −9.0 kcal/mol. The experimental validation of molecule-protein interaction identified the binding of four compounds with multiple plasmepsins; however, only compound 47 showed interaction with plasmepsin V, which exhibited the potential to be developed as an active PfPMV inhibitor.
Keywords:Plasmodium falciparum   plasmepsin V   virtual screening   antimalarials   molecular docking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号