首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators
Authors:Tong Li  Quang Vuong
Affiliation:aWashington State University;bUniversity of Southern California and INRA
Abstract:This paper considers the nonparametric estimation of the densities of the latent variable and the error term in the standard measurement error model when two or more measurements are available. Using an identification result due to Kotlarski we propose a two-step nonparametric procedure for estimating both densities based on their empirical characteristic functions. We distinguish four cases according to whether the underlying characteristic functions are ordinary smooth or supersmooth. Using the loglog Law and von Mises differentials we show that our nonparametric density estimators are uniformly convergent. We also characterize the rate of uniform convergence in each of the four cases.
Keywords:Measurement error model   multiple indicators   nonparametric density estimation   Fourier transformation   uniform convergence rate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号