Abstract: | Glioblastoma Multiforme (GBM) is the most invasive form of primary brain tumor. We propose a mathematical model that describes such tumor growth and allows us to describe two different mechanisms of cell invasion: diffusion (random motion) and chemotaxis (directed motion along the gradient of the chemoattractant concentration). The results are in a quantitative agreement with recent in vitro experiments. It was observed in experiments that the outer invasive zone grows faster than the inner proliferative region. We argue that this feature indicates transient behavior, and that the growth velocities tend to the same constant value for larger times. A longer‐time experiment is needed to verify this hypothesis and to choose between the two basic mechanisms for tumor growth. © 2005 Wiley Periodicals, Inc. Complexity 11: 53–57, 2005 |