Imaging ion-molecule reactions: charge transfer and C-N bond formation in the C(+) + NH3 system |
| |
Authors: | Pei Linsen Farrar James M |
| |
Affiliation: | Department of Chemistry, University of Rochester, Rochester, New York 14627, USA. |
| |
Abstract: | The velocity mapping ion imaging method is applied to the ion-molecule reactions occurring between C(+) and NH(3). The velocity space images are collected over the relative collision energy range from 1.5 to 3.3 eV, allowing both product kinetic energy distributions and angular distributions to be obtained from the data. The charge transfer process appears to be direct, dominated by long-range electron transfer that results in minimal deflection of the products. The product kinetic energy distributions are consistent with a process dominated by energy resonance. The kinetic energy distributions for C-N bond formation appear to scale with the total available energy, providing strong evidence that energy in the [CNH(3)](+) precursor to products is distributed statistically. The angular distributions for C-N bond formation show pronounced forward-backward symmetry, as expected for a complex that resembles a prolate symmetric top decaying along its symmetry axis. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|