首页 | 本学科首页   官方微博 | 高级检索  
     


Silicon nanocrystals in SiO2 matrix obtained by ion implantation under cyclic dose accumulation
Authors:V.A. Terekhov, S.Yu. Turishchev, V.M. Kashkarov, E.P. Domashevskaya, A.N. Mikhailov,D.I. Tetel&#x  baum
Affiliation:aVoronezh State University, Voronezh, Russia;bNizhny Novgorod State University, Nizhny Novgorod, Russia
Abstract:Silicon ions were implanted into the films of silicon oxide obtained by thermal oxidation of silicon wafers in a damp oxygen. Accumulation of the implantation dose was performed either in one step or cyclically in step-by-step mode, and after each stage of implantation the samples were annealed in a dry nitrogen. The second series of the samples differed from the first one by the formation of SiO2 matrix that included additional annealing in the air at 1100 °C for 3 h before ion implantation. X-ray absorption near edge structure (XANES) was obtained with the use of synchrotron radiation. Two absorption edges were observed in all of Si L2,3-spectra. One of them is related to elementary silicon while the other one-to silicon in SiO2. The fine structure of the first one indicates the formation of nanocrystalline silicon nc-Si in SiO2 matrix. Its atomic and electron structure depends on the technology of formation. For both series of samples, a cyclical accumulation of the total dose Φ=1017 cm−2 (for the total time of annealing—2 h) resulted in the appearance of more distinct structure in the range of absorption edge for the elementary silicon as compared with the case of single-step accumulation dose. In the more “dense” oxide of the samples from the second series, the probability of formation of silicon nanocrystals in a thin near-surface region of the implanted layer was reduced. These results can be interpreted with the account of the previously obtained photoluminescence, Raman scattering and electron microscopy data for these samples.
Keywords:Nanocrystals   Ion implantation   Electron structure   XANES
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号