首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New covalent modifications of phosphatidylethanolamine by alkanals: mass spectrometry based structural characterization and biological effects
Authors:Andrea Annibal  Kristin Schubert  Ulf Wagner  Ralf Hoffmann  Jürgen Schiller  Maria Fedorova
Institution:1. Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universit?t Leipzig, , Germany;2. Center for Biotechnology and Biomedicine, Universit?t Leipzig, , Germany;3. Institute for Medical Physics and Biophysics, Faculty of Medicine, Universit?t Leipzig, , Germany;4. LIFE‐Leipzig Research Center for Civilization Diseases, Universit?t Leipzig, , Germany;5. Division of Rheumatology, Department of Internal Medicine, Universit?t Leipzig, , Germany
Abstract:The pathophysiology of numerous human disorders, such as atherosclerosis, diabetes, obesity and Alzheimer's disease, is accompanied by increased production of reactive oxygen species (ROS). ROS can oxidatively damage nearly all biomolecules, including lipids, proteins and nucleic acids. In particular, (poly)unsaturated fatty acids within the phospholipid (PL) structure are easily oxidized by ROS to lipid peroxidation products (LPP) carrying reactive carbonyl groups. Carbonylated LPP are characterized by high in vivo toxicity due to their reactivity with nucleophilic substrates (Lys‐, Cys‐and His‐residues in proteins or amino groups of phosphatidylethanolamines PE]). Adducts of unsaturated LPP with PE amino groups have been reported before, whereas less is known about the reactivity of saturated alkanals – which are significantly increased in vivo under oxidative stress conditions – towards nucleophilic groups of PLs. Here, we present a study of new alkanal‐dipalmitoyl‐phosphatidylethanolamine (DPPE) adducts by MS‐based approaches, using consecutive fragmentation (MSn) and multiple reaction monitoring techniques. At least eight different DPPE–hexanal adducts were identified, including Schiff base and amide adducts, six of which have not been reported before. The structures of these new compounds were determined by their fragmentation patterns using MSn experiments. The new PE‐hexanal adducts contained dimeric and trimeric hexanal conjugates, including cyclic adducts. A new pyridine ring containing adduct of DPPE and hexanal was purified by HPLC, and its biological effects were investigated. Incubation of peripheral blood mononuclear cells and monocytes with modified DPPE did not result in increased production of TNF‐α as one selected inflammation marker. However, incorporation of modified DPPE into 1,2‐dipalmitoleoyl‐sn‐phosphatidylethanolamine multilamellar vesicles resulted in a negative shift of the transition temperature, indicating a possible role of alkanal‐derived modifications in changes of membrane structure. © 2014 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd.
Keywords:lipid oxidation  MSn  high resolution MS  multiple reaction monitoring  alkanals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号