Simultaneous velocity and scalar measurements in premixed recirculating flames |
| |
Authors: | P. Ferrão M. V. Heitor |
| |
Affiliation: | (1) Instituto Superior Técnico Mechanical Engineering Department Av. Rovisco Pais, P-1096 Lisboa Codex, Portugal, PT |
| |
Abstract: | The use of a laser-Doppler velocimeter has been extended to the analysis of turbulent heat transfer in a strongly sheared disc-stabilised propane-air flame through its combination with either laser Rayleigh scattering or digitally-compensated fine-wire thermocouples. The laser velocimeter was based on a conventional forward scattering system from the green light of a 5W Argon-Ion laser, while the Rayleigh signals used the blue line of the same laser. The procedure for the numeric compensation of the thermocouple signals included analysis of the effect of velocity and temperature on the time constant of the thermocouple and was optimised to allow combined velocity–temperature samples acquired by a purpose-built digital interference with a frequency up to 2000 Hz, without deterioration of the thermocouple by particle accretion. The maximum effective data rate for the combined Rayleigh/LDV system is shown to be around 130 Hz, which corresponds to a data rate of valid Doppler signals around 400 Hz and statistics based on more than 15 000 measurements is made possible. The results obtained with the two systems agree qualitatively, although the use of thermocouples attenuates the measured velocity-temperature correlations. The results are used to assess the extent to which turbulent mixing in flames is altered by the accompanying heat release and quantify the processes of non-gradient diffusion in a strongly recirculating premixed flame. Received: 15 November 1996/Accepted: 2 September 1997 |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|