首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrospray ionization mass spectrometry of
Authors:Nona Khaselev  Robert C Murphy
Institution:Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
Abstract:Lysoglycerophosphocholine lipids (lyso-GPC) are important intermediates in the synthesis and metabolism of glycerophosphocholine lipids which are major components of the cellular lipid bilayer. Significant differences in the collisional induced decomposition (CID) behavior were observed for each of the four different subtypes of lyso-GPC in both positive and negative ions. A major difference was observed in the initial CID product ions derived from lyso-GPC M + H]+ with the loss of water that was very abundant for acyl lyso-GPC which have a fatty acid ester substituent at either the sn-1 or sn-2 positions. Loss of neutral water was not very prominent in the case of plasmenyl and plasmanyl lyso-GPC species. The mechanism responsible for this difference in behavior of lyso-GPC subtypes was consistent with a higher proton affinity of carboxyl carbonyl oxygen atoms and vinyl ether oxygen atoms found in acyl and plasmenyl lyso-GPC lipids, respectively, as compared to the carbinol oxygen atom common to all lyso-GPC species. Collisional activation of lyso-GPC negative ions M - 15]- also revealed distinctive differences in product ions derived from acyl and ether lyso-GPC species. The acyl compounds showed the facile elimination of a highly stable carboxylate anion, whereas plasmenyl species underwent fragmentation with loss of a neutral aldehyde, likely a result of rearrangement involving the double bond in the vinyl ether moiety. The alkyl ether species (plasmanyl lyso-GPC lipids) did not undergo either decomposition reaction observed for the other lyso-GPC subtypes which permitted differentiation of acyl, plasmenyl, and plasmanyl lyso-GPC subtypes.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号