首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical investigations of structure and enzymatic mechanisms of aspartyl proteinases : Part I. Ab-initio calculations on an active site model: hydrogen diformiate with H2O and H3O
Abstract:The active site of aspartyl proteinases (Asp) was modelled as two formiates connected with a proton and set in geometry corresponding to Asp 32 and Asp 215 side chain carboxylate groups of endothiapepsin. The shared solvent molecule was alternatively H2O and H3O+. Their positions and those of hydrogen-bonded protons were optimized using the STO-3G basis set. Full geometry optimizations were made of the hydrogen diformiate complexes with H2O and H3O+. Asymmetric hydrogen-bonded structures resulted from these calculations, except for the fully optimized complex with H2O. In the complexes with H3O+, one proton moved consistently to the proximate carboxylic oxygen yielding a neutral, hydrated formic acid dimer. Interaction energies and proton potential energy curves were calculated using the 4-31G basis set. The interaction energy with H2O was found to be 20.49 kcal mol?1 and 202.75 kcal mol?1 with H3O+.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号