首页 | 本学科首页   官方微博 | 高级检索  
     


Insights into the unusual barrierless reaction between two closed shell molecules, (CH3)2S + F2, and its H2S + F2 analogue: role of recoupled pair bonding
Authors:Leiding Jeff  Woon David E  Dunning Thom H
Affiliation:Department of Chemistry, University of Illinois at Urbana-Champaign, Box 86-6, CLSL 600 South Mathews, Urbana, Illinois 61801, USA. leiding@illinois.edu
Abstract:Early flowtube studies showed that (CH(3))(2)S (DMS) reacted very rapidly with F(2); hydrogen sulfide (H(2)S), however, did not. Recent crossed molecular beam studies found no barrier to the reaction between DMS and F(2) to form CH(2)S(F)CH(3) + HF. At higher collision energies, a second product channel yielding (CH(3))(2)S-F + F was identified. Both reaction channels proceed through an intermediate with an unusual (CH(3))(2)S-F-F bond structure. Curiously, these experimental studies have found no evidence of direct F(2) addition to DMS, resulting in (CH(3))(2)SF(2), despite the fact that the isomer in which both fluorines occupy axial positions is the lowest energy product. We have characterized both reactions, H(2)S + F(2) and DMS + F(2), with high-level ab initio and generalized valence bond calculations. We found that recoupled pair bonding accounts for the structure and stability of the intermediates present in both reactions. Further, all sulfur products possess recoupled pair bonds with CH(2)S(F)CH(3) having an unusual recoupled pair bond dyad involving π bonding. In addition to explaining why DMS reacts readily with F(2) while H(2)S does not, we have studied the pathways for direct F(2) addition to both sulfide species and found that (for (CH(3))(2)S + F(2)) the CH(2)S(F)CH(3) + HF channel dominates the potential energy surface, effectively blocking access to F(2) addition. In the H(2)S + F(2) system, the energy of the transition state for formation of H(2)SF(2) lies very close to the H(2)SF + F asymptote, making the potential pathway a roaming atom mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号