首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamics study of catanionic bilayers composed of ion pair amphiphile with double-tailed cationic surfactant
Authors:Kuo An-Tsung  Chang Chien-Hsiang  Shinoda Wataru
Institution:Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
Abstract:The physical stability of catanionic vesicles is important for the development of novel drug or DNA carriers. For investigating the mechanism by which catanionic vesicles are stabilized, molecular dynamics (MD) simulation is an attractive approach that provides microscopic structural information on the vesicular bilayer. In this study, MD simulation was applied to investigate the bilayer properties of catanionic vesicles composed of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), and a double-tailed cationic surfactant, ditetradecyldimethylammonium chloride (DTDAC). Structural information regarding membrane elasticity and the organization and conformation of surfactant molecules was obtained based on the resulting trajectory. Simulation results showed that a proper amount of DTDAC could be used to complement the asymmetric structure between HTMA and DS, resulting in an ordered hydrocarbon chain packing within the rigid membrane observed in the mixed HTMA-DS/DTDAC system. The coexistence of gel and fluid phases was also observed in the presence of excess DTDAC. MD simulation results agreed well with results obtained from experimental studies examining mixed HTMA-DS/DTDAB vesicles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号