首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry
Authors:Zhou Yufeng  Zhong Pei
Institution:Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA.
Abstract:Using the Hamilton model Hamilton, J. Acoust. Soc. Am. 93, 1256-1266 (1993)], the effects of reflector geometry on the pulse profile and sequence of the shock waves produced by the original and upgraded reflector of an HM-3 lithotripter were evaluated qualitatively. Guided by this analysis, we have refined the geometry of the upgraded reflector to enhance its suppressive effect on intraluminal bubble expansion without compromising stone comminution in shock wave lithotripsy. Using the original HM-3 reflector at 20 kV, rupture of a standard vessel phantom made of cellulose hollow fiber (i.d. = 0.2 mm), in which degassed water seeded with ultrasound contrast agents was circulated, was produced at the lithotripter focus after about 30 shocks. In contrast, using the upgraded reflector at 24 kV no rupture of the vessel phantom could be produced within a 20-mm diameter around the lithotripter focus even after 200 shocks. On the other hand, stone comminution was comparable between the two reflector configurations, although slightly larger fragments were produced by the upgraded reflector. After 2000 shocks, stone comminution efficiency produced by the original HM-3 reflector at 20 kV is 97.15 +/- 1.92% (mean +/- SD), compared to 90.35 +/- 1.96% produced by the upgraded reflector at 24 kV (p<0.02). All together, it was found that the upgraded reflector could significantly reduce the propensity for vessel rupture in shock wave lithotripsy while maintaining satisfactory stone comminution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号