首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental, SOPPA(CCSD), and DFT analysis of substitutent effects on NMR 1JCF coupling constants in fluorobenzene derivatives
Authors:Vilcachagua Janaina Dantas  Ducati Lucas C  Rittner Roberto  Contreras Rubén H  Tormena Cláudio F
Affiliation:Chemistry Institute, State University of Campinas, Caixa Postal 6154, 13084-971 Campinas, SP, Brazil.
Abstract:Interesting insight into the electronic molecular structure changes associated with substituent effects on the Fermi contact (FC) and paramagnetic spin-orbit (PSO) terms of (1)J(CF) NMR coupling constants (SSCCs) in o-X-, m-X-, and p-X-fluorobenzenes (X = NH(2); NO(2)) is presented. The formulation of this approach is based on the influence of different conjugative and hyperconjugative interactions on a second-order property, which can be qualitatively predicted if it is known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals, which define some experimental trends for (1)J(CF) spin-spin coupling constants. In addition, DFT hybrid functionals were used, and a similar degree of confidence to compute the (1)J(CF) with those observed for the SOPPA(CCSD) method was obtained. The (1)J(CF) SSCCs for ezetimibe, a commercially fluorinated drug used to reduce cholesterol levels, were measured and DFT-calculated, and the qualitative approach quoted above was applied. As a byproduct, a possible method to determine experimentally a significant PSO contribution to (1)J(CF) SSCCs is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号