首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrophobic contribution of amino acids in peptides measured by hydrophobic interaction chromatography
Authors:Liu Chih-I  Hsu Keh-Ying  Ruaan Ruoh-Chyu
Affiliation:R&D Center of Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung-Li 320, Taiwan.
Abstract:The adsorption behaviors of amino acids in short chain peptides were examined. Each amino acid, aliphatic or charged, was inserted between the two tryptophans of a peptide, GWWG. The capacity factors of these peptides on an Ocytl-Sepharose column were measured. The adsorption enthalpies, entropies, and the number of repelled water molecules after adsorption were estimated to analyze the contribution of each different amino acid to its hydrophobic adsorption. The peptides inserted with aliphatic amino acids owned the highest capacity factors but released the least amount of adsorption heat among all the peptides under examination. It was found that the hydrophobic contribution of aliphatic amino acids was derived from the entropy gain by repelling the ordered water surrounding them. The insertion of negatively charged amino acids greatly reduced the capacity factors but still repelled a significant number of water molecules after adsorption. This indicated that the water molecules surrounding ionic amino acids were not orderly aligned. The dehydration cost energy but the water repelling did not offer enough entropy to drive the adsorption. Subsequently, lower retention was obtained from the peptides inserted with negatively charged ionic amino acids. The insertion of lysine increased the adsorption enthalpy but repelled no water molecules after adsorption. It was speculated that the inserted lysine still interacted with hydrophobic ligands but disturbed the interaction between ligands and adjacent tryptophans. Therefore, the adsorption enthalpy increased and the capacity factors decreased. Different amino acids contributed to hydrophobic interaction in different ways. The simultaneous analysis of capacity factor, adsorption enthalpy, adsorption entropy, and the number of repelled water molecules facilitated the understanding of the adsorption processes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号