首页 | 本学科首页   官方微博 | 高级检索  
     


Horizonless,singularity-free,compact shells satisfying NEC
Authors:Karthik H. Shankar
Affiliation:1.Initiative for Physics and Mathematics of Neural Systems, Center for memory and Brain,Boston University,Boston,USA
Abstract:Gravitational collapse singularities are undesirable, yet inevitable to a large extent in General Relativity. When matter satisfying null energy condition (NEC) collapses to the extent a closed trapped surface is formed, a singularity is inevitable according to Penrose’s singularity theorem. Since positive mass vacuum solutions are generally black holes with trapped surfaces inside the event horizon, matter cannot collapse to an arbitrarily small size without generating a singularity. However, in modified theories of gravity where positive mass vacuum solutions are naked singularities with no trapped surfaces, it is reasonable to expect that matter can collapse to an arbitrarily small size without generating a singularity. Here we examine this possibility in the context of a modified theory of gravity with torsion in an extra dimension. We study singularity-free static shell solutions to evaluate the validity of NEC on the shell. We find that with sufficiently high pressure, matter can be collapsed to arbitrarily small size without violating NEC and without producing a singularity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号