首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The magnetic part of the Weyl tensor,and the expansion of discrete universes
Authors:Timothy Clifton  Daniele Gregoris  Kjell Rosquist
Institution:1.School of Physics and Astronomy,Queen Mary University of London,London,UK;2.Department of Mathematics and Statistics,Dalhousie University,Halifax,Canada;3.Department of Physics,Stockholm University,Stockholm,Sweden
Abstract:We examine the effect that the magnetic part of the Weyl tensor has on the large-scale expansion of space. This is done within the context of a class of cosmological models that contain regularly arranged discrete masses, rather than a continuous perfect fluid. The natural set of geodesic curves that one should use to consider the cosmological expansion of these models requires the existence of a non-zero magnetic part of the Weyl tensor. We include this object in the evolution equations of these models by performing a Taylor series expansion about a hypersurface where it initially vanishes. At the same cosmological time, measured as a fraction of the age of the universe, we find that the influence of the magnetic part of the Weyl tensor increases as the number of masses in the universe is increased. We also find that the influence of the magnetic part of the Weyl tensor increases with time, relative to the leading-order electric part, so that its contribution to the scale of the universe can reach values of \(\sim \)1%, before the Taylor series approximation starts to break down.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号