首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Novel ansatzes and scalar quantities in gravito-electromagnetism
Authors:A Bakopoulos  P Kanti
Institution:1.Division of Theoretical Physics, Department of Physics,University of Ioannina,Ioannina,Greece
Abstract:In this work, we focus on the theory of gravito-electromagnetism (GEM)—the theory that describes the dynamics of the gravitational field in terms of quantities met in electromagnetism—and we propose two novel forms of metric perturbations. The first one is a generalisation of the traditional GEM ansatz, and succeeds in reproducing the whole set of Maxwell’s equations even for a dynamical vector potential \(\mathbf {A}\). The second form, the so-called alternative ansatz, goes beyond that leading to an expression for the Lorentz force that matches the one of electromagnetism and is free of additional terms even for a dynamical scalar potential \(\varPhi \). In the context of the linearised theory, we then search for scalar invariant quantities in analogy to electromagnetism. We define three novel, 3rd-rank gravitational tensors, and demonstrate that the last two can be employed to construct scalar quantities that succeed in giving results very similar to those found in electromagnetism. Finally, the gauge invariance of the linearised gravitational theory is studied, and shown to lead to the gauge invariance of the GEM fields \(\mathbf {E}\) and \(\mathbf {B}\) for a general configuration of the arbitrary vector involved in the coordinate transformations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号