首页 | 本学科首页   官方微博 | 高级检索  
     


A biased random key genetic algorithm applied to the electric distribution network reconfiguration problem
Authors:H. de Faria  Suffix"  >Jr.,M. G. C. Resende,D. Ernst
Affiliation:1.CECS,UFABC – Universidade Federal do ABC,Santo André,Brazil;2.Montefiore Institute, Quartier Polytech 1, 10,Université de Liège,Liege,Belgium;3.Mathematical Optimization and Planning, Amazon.com,Seattle,USA
Abstract:This work presents a biased random-key genetic algorithm (BRKGA) to solve the electric distribution network reconfiguration problem (DNR). The DNR is one of the most studied combinatorial optimization problems in power system analysis. Given a set of switches of an electric network that can be opened or closed, the objective is to select the best configuration of the switches to optimize a given network objective while at the same time satisfying a set of operational constraints. The good performance of BRKGAs on many combinatorial optimization problems and the fact that it has never been applied to solve DNR problems are the main motivation for this research. A BRKGA is a variant of random-key genetic algorithms, where one of the parents used for mating is biased to be of higher fitness than the other parent. Solutions are encoded by using random keys, which are represented as vectors of real numbers in the interval (0,1), thus enabling an indirect search of the solution inside a proprietary search space. The genetic operators do not need to be modified to generate only feasible solutions, which is an exclusive task of the decoder of the problem. Tests were performed on standard distribution systems used in DNR studies found in the technical literature and the performance and robustness of the BRKGA were compared with other GA implementations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号