首页 | 本学科首页   官方微博 | 高级检索  
     

Z箍缩动态黑腔形成过程MULTI程序一维数值模拟
引用本文:吴福源,禇衍运,叶繁,李正宏,杨建伦,Rafael Ramis,王真,祁建敏,周林,梁川. Z箍缩动态黑腔形成过程MULTI程序一维数值模拟[J]. 物理学报, 2017, 66(21): 215201-215201. DOI: 10.7498/aps.66.215201
作者姓名:吴福源  禇衍运  叶繁  李正宏  杨建伦  Rafael Ramis  王真  祁建敏  周林  梁川
作者单位:1. 中国工程物理研究院核物理与化学研究所, 绵阳 621900;2. 西班牙马德里理工大学航空航天学院, 马德里 28040
基金项目:国家自然科学基金(批准号:11135007,11305155)、西班牙经济与竞争力部(批准号:ENE2014-54960-R)和欧盟聚变联盟(批准号:AWP15-ENR-01/CEA-02)资助的课题.
摘    要:Z箍缩动态黑腔能够高效地将Z箍缩丝阵等离子体动能转换为黑腔辐射能,为驱动惯性约束靶丸聚变提供高品质的X射线辐射场.利用一维双温多群辐射磁流体力学程序MULTI-IFE,研究了"聚龙一号"装置驱动电流条件下的Z箍缩动态黑腔形成基本物理过程.数值模拟结果表明,在动态黑腔形成过程中,辐射热波的传播速度比冲击波的传播速度更快,比冲击波更早到达泡沫中心,使中心区域的泡沫在冲击波到达前就已具有较高的辐射温度.对于"聚龙一号"装置动态黑腔实验0180发次采用的负载参数,辐射热波和冲击波在泡沫中的传播速度分别约为36.1 cm/μs和17.6 cm/μs,黑腔辐射温度在黑腔形成初期约80 eV,在冲击波到达泡沫中心前可达100 eV以上,丝阵等离子体外表面发射的X射线能量集中在1000 eV以下.本文给出了程序采用的计算模型、美国"土星"装置丝阵内爆计算结果和"聚龙一号"装置动态黑腔实验0180发次模拟结果.

关 键 词:Z箍缩  动态黑腔  辐射磁流体力学  冲击波
收稿时间:2017-05-27

One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI
Wu Fu-Yuan,Chu Yan-Yun,Ye Fan,Li Zheng-Hong,Yang Jian-Lun,Rafael Ramis,Wang Zhen,Qi Jian-Min,Zhou Lin,Liang Chuan. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 2017, 66(21): 215201-215201. DOI: 10.7498/aps.66.215201
Authors:Wu Fu-Yuan  Chu Yan-Yun  Ye Fan  Li Zheng-Hong  Yang Jian-Lun  Rafael Ramis  Wang Zhen  Qi Jian-Min  Zhou Lin  Liang Chuan
Affiliation:1. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;2. E. T. S. I. Aeronautica y del Espacio, Universidad Politecnica de Madrid, Madrid 28040, Spain
Abstract:Z-pinch dynamic hohlraum can effectively convert Z-pinch plasma kinetic energy into radiation field energy, which has a potential to implode a pellet filled with deuterium-tritium fuel to fusion conditions when the drive current is sufficiently large. To understand the formation process of Z-pinch dynamic hohlraum on JULONG-I facility with a typical drive current of 8-10 MA, a new radiation magneto-hydrodynamics code is developed based on the program MULTI-IFE. MULTI-IFE is a one-dimensional, two-temperature, multi-group, open-source radiation hydrodynamic code, which is initially designed for laser and heavy ion driven fusion. The original program is upgraded to simulate Z-pinch related experiments by introducing Lorentz force, Joule heating and the evolution of magnetic field into the code. Numerical results suggest that a shock wave and a thermal wave will be launched when the high speed plasma impacts onto the foam converter. The thermal wave propagates much faster than shock wave, making the foam become hot prior to the arrival of shock wave. For the load parameters and drive current of shot 0180, the calculated propagation speed of thermal wave and shock wave are about 36.1 cm/μs and 17.6 cm/μs, respectively. The shock wave will be reflected when it arrives at the foam center and the speed of reflected shock wave is about 12.9 cm/μs. Calculations also indicate that the plastic foam will expand obviously due to the high temperature radiation environment (~30 eV) around it before the collision between tungsten plasma and foam converter. The evolution of radial radiation temperature profile shows that a pair of bright strips pointing to the foam center can be observed by an on-axis streak camera and the radiation temperature in the foam center achieves its highest value when the shock arrives at the axis. A bright emission ring moving towards the foam center can also be observed by an on-axis X-ray frame camera. The best time to capture the bright strips and bright emission rings is before the thermal wave reaches the foam center. Even though some amount of X-ray radiation in the foam is expected to escape from the hohlraum via radiation transport process, simulation results suggest that the tungsten plasma can serve as a good hohlraum wall. The radiation temperature is about 80 eV when the dynamic hohlraum is created and can rise more than 100 eV before the shock arrives at the foam center. Most of the X-rays emitted by the wire-array plasma surface have energies below 1000 eV. In this paper, the physical model of the code MULTI-IFE and the simulation results of array implosions on Saturn facility are presented as well.
Keywords:Z-pinch  dynamic hohlraum  radiation magneto-hydrodynamics  shock
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号