首页 | 本学科首页   官方微博 | 高级检索  
     检索      

多通道石墨纳米带中弹性声学声子输运和热导特性
引用本文:卿前军,周欣,谢芳,陈丽群,王新军,谭仕华,彭小芳.多通道石墨纳米带中弹性声学声子输运和热导特性[J].物理学报,2016,65(8):86301-086301.
作者姓名:卿前军  周欣  谢芳  陈丽群  王新军  谭仕华  彭小芳
作者单位:1. 中南林业科技大学理学院, 长沙 410004; 2. 长沙理工大学, 近地空间电磁环境监测与建模湖南省普通高校重点实验室, 长沙 410004; 3. 宜春学院物理科学与工程技术学院, 宜春 336000
基金项目:国家自然科学基金(批准号: 11247030)、湖南省自然科学基金(批准号: 14JJ4054)、长沙理工大学近地空间电磁环境监测与建模湖南省普通高校重点实验室开放基金(批准号: 20150103)、中南林业科技大学人才引进计划(批准号: 104-0160)、江西省自然科学基金(批准号: 20122BAB212009)和江西省教育厅科技项目(批准号: GJJ12601)资助的课题.
摘    要:采用非平衡格林函数方法, 在保持总的能量输出通道中石墨链数不变的条件下, 研究并比较了并列的石墨纳米带通道中弹性声学声子输运和热导特性. 结果表明, 能量输出通道的增加能降低每个能量输出通道的热导; 与能量输入热库最近的能量输出通道热导最大, 最远的能量输出通道热导最小; 中间能量输出通道的热导性质与并列的各输出通道的结构参数密切相关, 最近和最远的能量输出通道的热导性质仅与各自能量输出通道的结构参数有关; 粗糙边缘结构能有效调节各通道的热导; 总的热导性质与能量输出通道石墨链数、能量输出通道数以及边缘结构粗糙程度密切相关.

关 键 词:非平衡格林函数  声学声子输运  热导  量子体系
收稿时间:2015-11-20

Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions
Qing Qian-Jun,Zhou Xin,Xie Fang,Chen Li-Qun,Wang Xin-Jun,Tan Shi-Hua,Peng Xiao-Fang.Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions[J].Acta Physica Sinica,2016,65(8):86301-086301.
Authors:Qing Qian-Jun  Zhou Xin  Xie Fang  Chen Li-Qun  Wang Xin-Jun  Tan Shi-Hua  Peng Xiao-Fang
Institution:1. Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004, China; 2. Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science and Technology, Changsha 410004, China; 3. School of Physics Science and Engineering Technology, Yichun University, Yichun 336000, China
Abstract:By using non-equilibrium Green’s function method, we investigate the transmission rate of acoustic phonon and thermal conductance through a parallel multi-terminal graphene junctions, the relationship between the thermal-transport property in each terminal and the number of quantum terminals, the relationship between the thermal-transport property in each terminal and the relative position of quantum terminals in quantum structure, and also study the thermaltransport property in each terminal and the rough degree of edge structure. The results show that when the graphene chains (dimer lines) across the ribbon width are fixed, the increase of the number of the parallel multi-terminal graphene junctions can reduce the transmission rate of the phonons and the thermal conductance of each output terminal as well. This is because the increase of the number of the graphene junctions can lead to the decrease of the transverse dimension of the each output terminal, which enlarges the strength of the phonon scattering and results in the reduction of the phonon transmission. Owing to long distance scattering, the transmission rate of the phonons of the furthest distant output terminal is the smallest, and also the thermal conductance of the furthest output terminal is the smallest. On the contrary, the strength of the phonon scattering is the weakest for the closest output terminal. So the transmission rate of the phonons is the biggest, which induces the thermal conductance to be the biggest. The thermal conductance of the middle-output terminal depends sensitively on the structural parameters of each terminal. This is because mainly the relative position between the middle-output terminal and the phonon-input terminal is related closely to the structural parameters of each terminal, which can influence the strength of the phonon scattering and the transmission rate of the phonons. However, the thermal conductances in the top and bottom output terminals are just sensitively dependent on the structural parameters of the respective output terminal. This is because the relative position between the top (or bottom) output terminal and the phonon-input terminal is only related to the structural parameters of the respective output terminal. The rough edge structure can reduce obviously the transmission rate of the phonons, and the thermal conductance of the closest output terminal as well. The rough edge structure can modulate slightly the transmission rate of the phonons and the thermal conductance of the other output terminal. The total thermal conductance is related closely to the number of total graphene chains, the number of the multi-terminal graphene junctions, and the rough degree of edge structure. These results shed new light on the understanding of the thermal transport behaviors of multi-terminal junction quantum devices based on graphene-based nanomaterials in practical application.
Keywords:nonequilibrium Green's functions  acoustic phonon transport  thermal conductance  quantum system
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号