首页 | 本学科首页   官方微博 | 高级检索  
     检索      

894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用
引用本文:张星,张奕,张建伟,张建,钟础宇,黄佑文,宁永强,顾思洪,王立军.894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用[J].物理学报,2016,65(13):134204-134204.
作者姓名:张星  张奕  张建伟  张建  钟础宇  黄佑文  宁永强  顾思洪  王立军
作者单位:1. 中国科学院长春光学精密机械与物理研究所, 发光学及应用国家重点实验室, 长春 130033; 2. 中国科学院武汉物理与数学研究所, 中国科学院原子频标重点实验室, 武汉 430071; 3. 中国科学院大学, 北京 100049
基金项目:国家自然科学基金(批准号: 61434005, 61474118, 11304362)、国家科技重大专项(批准号: 2014ZX04001151)、吉林省科技发展计划项目(批准号: 20150203011GX, 20140101203JC)和长春市科技计划项目(批准号: 14KG006, 15SS02, 13KG22)资助的课题.
摘    要:报道了自行研制的894 nm高温垂直腔面发射激光器(VCSEL)以及基于此类器件的芯片级铯原子钟系统的应用实验结果.根据芯片级铯原子钟对VCSEL在特定高温环境下产生894.6 nm线偏振激光的要求,对器件的量子阱增益及腔模位置等材料结构参数进行了优化,确定增益-腔模失谐量为-15 nm,使器件的基本性能在高温环境下保持稳定.研制的VCSEL器件指标为:20—90?C温度范围内阈值电流保持在0.20—0.23 m A,0.5 m A工作电流下输出功率0.1 mW;85.6?C温度环境下激光波长894.6 nm,偏振选择比59.8:1;采用所研制的VCSEL与铯原子作用,获得了芯片级铯原子钟实施激光频率稳频的吸收谱线和实施微波频率稳频的相干布居囚禁谱线.

关 键 词:垂直腔面发射激光器  芯片级原子钟  高温  相干布居囚禁
收稿时间:2016-03-04

894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system
Zhang Xing,Zhang Yi,Zhang Jian-Wei,Zhang Jian,Zhong Chu-Yu,Huang You-Wen,Ning Yong-Qiang,Gu Si-Hong,Wang Li-Jun.894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system[J].Acta Physica Sinica,2016,65(13):134204-134204.
Authors:Zhang Xing  Zhang Yi  Zhang Jian-Wei  Zhang Jian  Zhong Chu-Yu  Huang You-Wen  Ning Yong-Qiang  Gu Si-Hong  Wang Li-Jun
Institution:1. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2. Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:In this study, an 894 nm high temperature vertical-cavity surface-emitting laser (VCSEL) is reported. Furthermore, a Cs chip-scale atomic clock (CSAC) system experiment based on this VCSEL is carried out.To achieve low threshold/power consumption under high temperature condition, the VCSEL epitaxial structure is optimized. Especially, the so-called gain cavity-mode detuning technology is utilized to improve the temperature sensitivity of the device output characteristics. The relationship between the structure of quantum well and the gain is simulated by using the commercial software PICS3D. In order to achieve high gain and low threshold properties, the thickness of the quantum well is optimized. Based on the theory of transmission matrix, the VCSEL cavity mode (etalon) is calculated. Finally, a -15 nm quantum well gain-cavity mode offset is utilized to achieve relatively stable cavity mode gain, which can guarantee the temperature-insensitivity of the VCSEL output characteristics.The output performance of the VCSEL device we fabricated is investigated experimentally. The VCSEL lightcurrent (L-I) characteristic is tested under different temperatures. It is found that benefiting from the gain-cavity mode offset design, the threshold can be maintained at 0.20–0.23 mA when the temperature increases from 20 ℃ to 90 ℃. Meantime, the output power of more than 100 μW is achieved at different temperature levels. By comparing with the results at room temperature, No dramatic degradation of the VCSEL high temperature L-I characteristics is found, which means that the VCSEL output characteristic is relatively temperature-insensitive. The wavelength of the VCSEL is 890.4 nm at a temperature of 20 ℃. When the temperature increases up to 85.6 ℃, the VCSEL wavelength is red-shifted to 894.6 nm (Cs D1 line), corresponding to a red shift ratio of 0.064 nm/℃. According to the polarization requirement of CSAC applications, the polarization properties of the VCSEL are studied and the results are as follows: under an injected current of 1 mA and operation temperature of 20 ℃, Pmax = 278.2 μW and Pmin = 5.9 μW, corresponding to a polarization ratio of 47:1; at a temperature of 85.6 ℃, Pmax = 239.2 μW and Pmin = 4 μW, corresponding to a polarization ratio of 59:8:1.Using the VCSEL reported in this paper as a laser source, the CSAC experiment is carried out. At 4.596 GHz of modulated frequency, the output laser of the VCSEL is collimated and interacts with Cs atoms. Finally the closed-loop frequency locking atomic clock is demonstrated. The Cs laser absorption spectrum for laser frequency stabilization, as well as the CPT signal for Cs CSAC microwave frequency stabilization is obtained.
Keywords:vertical-cavity surface-emitting laser  Cs chip-scale atomic clock  high temperature  coherent population trapping
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号