首页 | 本学科首页   官方微博 | 高级检索  
     检索      

多量子比特核磁共振体系的实验操控技术
引用本文:潘健,余琦,彭新华.多量子比特核磁共振体系的实验操控技术[J].物理学报,2017,66(15):150302-150302.
作者姓名:潘健  余琦  彭新华
作者单位:1. 中国科学技术大学, 中国科学院微观磁共振重点实验室和近代物理系, 合肥 230026; 2. 中国科学技术大学, 量子信息与量子科技前沿协同创新中心, 合肥 230026
基金项目:国家重点基础研究发展计划(批准号:2013CB921800,2014CB848700)、国家杰出青年科学基金(批准号:11425523)、国家自然科学基金(批准号:1375167,11661161018,11227901)和中国科学院战略优先研究计划(B)(批准号:XDB01030400)资助的课题.
摘    要:随着量子信息与量子计算科学的发展,量子信息处理器被广泛地用于量子计算、量子模拟、量子度量等方面的研究.为了能在实验上实现这些日益复杂的方案,将量子计算机的潜能转化成现实,需要不断提高可操控的量子体系比特位数,实现更复杂的量子操控.核磁共振自旋体系作为一个优秀的量子实验测试平台,提供了丰富而又精密的量子操控手段.近几年来在此平台上进行了不少的多量子比特实验,发展并积累了一系列的多量子比特实验技术.本文首先阐述了核磁共振体系多量子比特实验中的实验困难,然后结合7量子比特标记赝纯态制备以及其他有关实验,对多比特实验过程中应用到的实验技术进行介绍.最后对核磁共振体系多量子比特实验技术方向的进一步研究进行了总结和展望.

关 键 词:核磁共振  量子计算  量子操控  多量子比特
收稿时间:2017-05-08

Experimental technique for multi-qubit nuclear magnetic resonance system
Pan Jian,Yu Qi,Peng Xin-Hua.Experimental technique for multi-qubit nuclear magnetic resonance system[J].Acta Physica Sinica,2017,66(15):150302-150302.
Authors:Pan Jian  Yu Qi  Peng Xin-Hua
Institution:1, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 2. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract:With the development of quantum information and quantum computation science, quantum information processor has been widely used in different areas such as quantum simulation, quantum computation and quantum metrology and so on. To make quantum computer come true, we need to increase the number of controllable qubits of the system and improve the controllability to perform complex quantum manipulation. As a good experimental testbed for quantum information processing, nuclear magnetic resonance (NMR) spin system provides rich and sophisticated quantum control methods. In recent years a lot of multi-qubit experiments have been performed on the platform and a series of experimental technologies have been developed. In this paper, we firstly explain the difficulties of multi-qubit NMR experiments. Then by focusing on the experiment of 7-qubit labelled pseudo-pure state preparation and other relevant experiments, we review the technologies in multi-qubit experiments. Using the radio frequency selective method, the inhomogeneities of the radio frequency pulses are reduced and the spectral resolution is improved. After performing 1/2 spin selective sequence, we can regard the three methyl protons in the sample of crotonic acid as a single 1/2 spin nucleus and treat the whole molecule as a 7-qubit quantum information processor. We utilize Gauss pulses, Hermite pulses, composite pulses and gradient ascent pulse engineering (GRAPE) pulses to implement basic π/2 and π rotation operations. The GRAPE pulses are calculated by subspace GRAPE program to speed up the computation greatly. The errors of the basic pulses caused by chemical shift and J-coupling evolution can be estimated by the program of pulse compilation. It divides the errors of the pulses into a series of post-errors and pre-errors. A program of sequence compilation is used to eliminate the accumulated error of the whole pulse sequence, reduce the number of pulses and optimize the experimental duration. A variety of methods of quantum state tomography have been proposed to improve the efficiency of reading out information about quantum state. As an experimental example, we combine the above experimental technologies and perform the experiment of 7-qubit labelled pseudo-pure state preparation by using the method of cat state preparation. The sequence of cat state preparation consists of three steps:encoding procedure, phase cycling and decoding procedure. We use 14 experiments to realize the phase cycling and acquire the final 7-qubit labelled pseudo-pure state. The total duration of experimental sequence is about 132 ms. All the readout spectra have the similar shapes to the theoretical expectations. Finally we give an outlook for further research in this direction.
Keywords:nuclear magnetic resonance  quantum computation  quantum control  multi-qubit experiment
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号