首页 | 本学科首页   官方微博 | 高级检索  
     

筒内高功率脉冲磁控放电的电磁控制与优化
引用本文:崔岁寒,吴忠振,肖舒,刘亮亮,郑博聪,林海,傅劲裕,田修波,朱剑豪,谭文长,潘锋. 筒内高功率脉冲磁控放电的电磁控制与优化[J]. 物理学报, 2017, 66(9): 95203-095203. DOI: 10.7498/aps.66.095203
作者姓名:崔岁寒  吴忠振  肖舒  刘亮亮  郑博聪  林海  傅劲裕  田修波  朱剑豪  谭文长  潘锋
作者单位:1. 北京大学深圳研究生院新材料学院, 深圳 518055;2. 香港城市大学物理与材料科学系, 香港 999077
基金项目:国家材料基因组计划(批准号:2016YFB0700600)、国家自然科学基金(批准号:51301004)、深圳科技研究基金(批准号:JCYJ20140903102215536,JCYJ20150828093127698)和香港城市大学应用研究基金(批准号:9667122)资助的课题.
摘    要:高功率脉冲磁控溅射(Hi PIMS)技术被提出以来就受到广泛关注,其较高的溅射材料离化率结合适当的电磁控制,可产生高致密度、高结合力和高综合性能的涂层,但其沉积速率低、放电不稳定、溅射材料离化率差异较大.我们设计了一种筒形溅射源,通过对结构的设计优化,利用类空心阴极放电效应,使问题得到解决.然而其靶面切向磁场不均匀,电子逃逸严重,进而造成等离子体密度偏低,且放电不均匀.本文通过对其放电和等离子体分布进行仿真,提出电场阻挡和磁铁补偿两种方案,研究了不同电场控制条件下的放电行为和等离子体分布.结果表明:增加电子阻挡屏极可以生成势阱,从而有效抑制电子从边缘的逸出;优化后的磁铁补偿可以显著提高靶面横向磁场的均匀性及靶面利用率.两种方案同时作用时,Hi PIMS放电刻蚀环面积更大、且更加均匀.

关 键 词:高功率脉冲磁控溅射  筒内放电  电子阻挡屏极  磁场补偿
收稿时间:2016-11-04

Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source
Cui Sui-Han,Wu Zhong-Zhen,Xiao Shu,Liu Liang-Liang,Zheng Bo-Cong,Lin Hai,Ricky K Y Fu,Tian Xiu-Bo,Paul K,Tan Wen-Chang,Pan Feng. Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source[J]. Acta Physica Sinica, 2017, 66(9): 95203-095203. DOI: 10.7498/aps.66.095203
Authors:Cui Sui-Han  Wu Zhong-Zhen  Xiao Shu  Liu Liang-Liang  Zheng Bo-Cong  Lin Hai  Ricky K Y Fu  Tian Xiu-Bo  Paul K  Tan Wen-Chang  Pan Feng
Affiliation:1. School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China;2. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong 999077, China
Abstract:High-power impulse magnetron sputtering (HiPIMS), a new physical vapor deposition technique which combines the advantages of the high ionization rates of the sputtered materials and control of electromagnetism, has been widely used to deposit high-performance coatings with a large density and high adhesion. However, HiPIMS has some intrinsic disadvantages such as the low deposition rate, unstable discharge, and different ionization rates for different materials thereby hampering wider industrial adoption. We have recently designed an optimized cylindrical source based on the hollow cathode effect to circumvent the aforementioned limitations. However, during the operation of the cylindrical source, the discharge is inhomogeneous and the etching stripes are nonuniform. In order to determine the underlying mechanism and optimize the electromagnetic control, the discharge in the HiPIMS cylindrical source is simulated. The tangential magnetic field distribution on the target surface of the cylindrical sputtering source is inhomogeneous and electron runaway is serious, resulting in a relatively low plasma density. Two solutions are proposed to improve the situations. The first one is electrical improvement by installing an electron blocking plate, and the second one is magnetic improvement by adding compensating magnets. Our simulation results of the first method show that a potential well is produced by the electron blocking plate to suppress electron runaway and the plasma density is improved significantly, especially around the central cross-section of the cylindrical sputtering source. The discharge becomes homogeneous, and the etching stripes are uniform albeit not full enough. The second method of magnetic improvement significantly improves the homogeneity of the tangential magnetic field distribution on the target surface and the target utilization rate. After adding the optimized compensating magnets, the shape of the effective area (the value of the tangential magnetic field in a range of 25-50 mT) on the target surface can be controlled and made zonal. The target utilization rate increases to over 80% from 60%. In order to obtain the optimal conditions, the two techniques are combined. A larger and more homogeneous etching ring is observed by adopting both the electrical and magnetic improvements as predicted and explained by the simulation results. It can be concluded that the combination of the two improvement techniques can improve and optimize the HiPIMS cylindrical source.
Keywords:high power impulse magnetron sputtering  discharge in cylindrical source  electron blocking plate  magnetic field compensation
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号