首页 | 本学科首页   官方微博 | 高级检索  
     检索      

一维自旋1键交替XXZ链中的量子纠缠和临界指数
引用本文:苏耀恒,陈爱民,王洪雷,相春环.一维自旋1键交替XXZ链中的量子纠缠和临界指数[J].物理学报,2017,66(12):120301-120301.
作者姓名:苏耀恒  陈爱民  王洪雷  相春环
作者单位:1. 西安工程大学理学院, 西安 710048; 2. 西安交通大学理学院, 西安 710049; 3. 重庆医科大学医学信息学院, 重庆 400016; 4. 重庆医科大学公共卫生与管理学院, 重庆 400016
基金项目:国家自然科学基金(批准号:11504283)资助的课题.
摘    要:利用基于张量网络表示的矩阵乘积态算法以及无限虚时间演化块抽取方法,本文研究了一维无限格点自旋1的键交替反铁磁XXZ海森伯模型中的量子相变.分别计算了系统的von Neumann熵、单位格点保真度和序参量,从而得到了系统随键交替强度的变化从拓扑有序Néel相到局域有序二聚化相的量子相变点.我们用矩阵乘积态方法拟合出了相变的中心荷c?0.5,表明此相变属于二维经典的Ising普适类.另外,通过对拓扑Néel序的数值拟合,我们得到了相变点处的特征临界指数β′=0.236和γ′=0.838.

关 键 词:量子相变  量子纠缠  拓扑相  临界指数
收稿时间:2017-01-03

Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains
Su Yao-Heng,Chen Ai-Min,Wang Hong-Lei,Xiang Chun-Huan.Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains[J].Acta Physica Sinica,2017,66(12):120301-120301.
Authors:Su Yao-Heng  Chen Ai-Min  Wang Hong-Lei  Xiang Chun-Huan
Institution:1. School of Science, Xi'an Polytechnic University, Xi'an 710048, China; 2. School of Science, Xi'an Jiaotong University, Xi'an 710049, China; 3. College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China; 4. School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
Abstract:The characterization of the quantum phase transition in a lowdimensional system has attracted a considerable amount of attention in quantum manybody systems. As one of the fundamental models in quantum magnetism, spin-1 models have richer phase diagrams and show more complex physical phenomena. In the spin-1 antiferromagnetic XXZ model, the Haldane phase and the Néel phase are the gapped topologic phases which cannot be characterized by the local order parameters. To characterize the nature in such phases, one has to calculate the non-local long range order parameters. Normally, the non-local order parameter in the topological phase is obtained from the extrapolation of finite-sized system in numerical study. However, it is difficult to extract the critical exponents with such an extrapolated non-local order parameter due to the numerical accuracy. In a recently developed tensor network representation, i.e., the infinite matrix product state (iMPS) algorithm, it was shown that the non-local order can be directly calculated from a very large lattice distance in an infinite-sized system rather than an extrapolated order parameter in a finite-sized system. Therefore, it is worthwhile using this convenient technique to study the non-local orders in the topological phases and characterize the quantum criticalities in the topological quantum phase transitions. In this paper, by utilizing the infinite matrix product state algorithm based on the tensor network representation and infinite time evolving block decimation method, the quantum entanglement, fidelity, and critical exponents of the topological phase transition are investigated in the one-dimensional infinite spin-1 bond-alternating XXZ Heisenberg model. It is found that there is always a local dimerization order existing in the whole parameter range when the bond-alternative strength parameter changes from 0 to 1. Also, due to the effect of the bond-alternating, there appears a quantum phase transition from the long-rang ordering topological Néel phase to the local ordering dimerization phase. The von Neumann entropy, fidelity per lattice site, and order parameters all give the same phase transition point at δc = 0.638. To identify the type of quantum phase transition, the central charge c ≈ 0.5 is extracted from the ground state von Neumann entropy and the finite correlation length, which indicates that the phase transition belongs to the two-dimensional Ising universality class. Furthermore, it is found that the Néel order and the susceptibility of Néel order have power-law relations to |δ-δc|. From the numerical fitting of the Néel order and its susceptibility, we obtain the characteristic critical exponents β' = 0.236 and γ' = 0.838. It indicates that such critical exponents from our method characterize the nature of the quantum phase transition. Our critical exponents from the iMPS method can provide guidance for studying the properties of the phase transition in quantum spin systems.
Keywords:quantum phase transition  quantum entanglement  topological phase  critical exponent
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号