首页 | 本学科首页   官方微博 | 高级检索  
     

Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba自旋劈裂
引用本文:赵正印,王红玲,李明. Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba自旋劈裂[J]. 物理学报, 2016, 65(9): 97101-097101. DOI: 10.7498/aps.65.097101
作者姓名:赵正印  王红玲  李明
作者单位:许昌学院电气信息工程学院, 许昌 461000
基金项目:国家自然科学基金(批准号: 61306012)、河南省高等学校青年骨干教师(批准号: 2015GGJS-145)和许昌学院杰出青年骨干人才计划资助的课题.
摘    要:正如人们所知, 可以通过电场或者设计非对称的半导体异质结构来调控体系的结构反演不对称性(SIA)和Rashba自旋劈裂. 本文研究了Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中第一子带的Rashba 系数和Rashba自旋劈裂随Al0.3Ga0.7N插入层(右阱)的厚度ws以及外加电场的变化关系, 其中GaN层(左阱)的厚度为40-ws Å. 发现随着ws的增加, 第一子带的Rashba系数和Rashba自旋劈裂首先增加, 然后在ws>20 Å 时它们迅速减小, 但是ws>30 Å时Rashba自旋劈裂减小得更快, 因为此时kf也迅速减小. 阱层对Rashba系数的贡献最大, 界面的贡献次之且随ws变化不是太明显, 垒层的贡献相对比较小. 然后, 我们假ws=20 Å, 发现外加电场可以很大程度上调制该体系的Rashba系数和Rashba自旋劈裂, 当外加电场的方向同极化电场方向相同(相反)时, 它们随着外加电场的增加而增加(减小). 当外加电场从-1.5×108 V·m-1到1.5×108 V· m-1变化时, Rashba系数随着外加电场的改变而近似线性变化, Rashba自旋劈裂先增加得很快, 然后近似线性增加, 最后缓慢增加. 研究结果表明可以通过改变GaN层和Al0.3Ga0.7N层的相对厚度以及外加电场来调节Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba 系数和Rashba自旋劈裂, 这对于设计自旋电子学器件有些启示.

关 键 词:Rashba自旋劈裂  自旋轨道耦合  自洽计算  极化效应
收稿时间:2015-12-19

Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N quantum well
Zhao Zheng-Yin,Wang Hong-Ling,Li Ming. Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N quantum well[J]. Acta Physica Sinica, 2016, 65(9): 97101-097101. DOI: 10.7498/aps.65.097101
Authors:Zhao Zheng-Yin  Wang Hong-Ling  Li Ming
Affiliation:College of Electrical and Information Engineering, Xuchang University, Xuchang 461000, China
Abstract:As is well known, the structure inversion asymmetry (SIA) and Rashba spin splitting of semiconductor heterostructure can be modulated by either electric field or engineering asymmetric heterostructure. In this paper, we calculate the Rashba coefficient and Rashba spin splitting for the first subband of Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N QW each as a function of thickness (ws) of the inserted Al0.3Ga0.7N layer (right well) and external electric field. The thickness of GaN layer (left well) is 40-ws Å. With ws increasing, the Rashba coefficient and Rashba spin splitting for the first subband increase first, because the polarized electric field in the well region increases and the electrons shift towards the left heterointerfaces, and then decrease when ws>20 Å since the electric field in the well region decreases, and the confined energy increases as effective well thickness decreases. But when ws>30 Å, the Rashba spin splitting decreases more rapidly, since kF decreases rapidly. Contributions to the Rashba coefficient from the well is largest, lesser is the contribution from the interface, which varies slowly with ws, and the contribution from the barrier is relatively small. Then we assume ws=20 Å, and find that the external electric field can modulate the Rashba coefficient and Rashba spin splitting greatly because the contribution to the Rashba coefficient from the well changes rapidly with the external electric field, and the external electric field brings about additional potential and affects the spatial distribution of electrons, confined energy and Fermi level. When the direction of the external electric field is the same as (contrary to) the polarization electric field, the Rashba coefficient and Rashba spin splitting increase (decrease) with external electric field increasing. With the external electric field changing from -1.5×108 V· m-1 to 1.5×108 V· m-1, the Rashba coefficient approximately varies linearly, and the Rashba spin splitting first increases rapidly, then approximately increases linearly, and finally increases slowly. Because the value of kF increases rapidly first, then increases slowly. Results show that the Rashba coefficient and the Rashba spin splitting in the Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N QW can be modulated by changing the relative thickness of GaN and Al0.3Ga0.7N layers and the external electric field, thereby giving guidance for designing the spintronic devices.
Keywords:Rashba spin splitting  spin-orbit coupling  self-consistent calculation  polarized effect
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号