首页 | 本学科首页   官方微博 | 高级检索  
     

γ-Fe_2O_3/NiO核-壳纳米花的合成、微结构与磁性
引用本文:李志文,何学敏,颜士明,宋雪银,乔文,张星,钟伟,都有为. γ-Fe_2O_3/NiO核-壳纳米花的合成、微结构与磁性[J]. 物理学报, 2016, 65(14): 147101-147101. DOI: 10.7498/aps.65.147101
作者姓名:李志文  何学敏  颜士明  宋雪银  乔文  张星  钟伟  都有为
作者单位:1. 南京大学物理系, 固体微结构物理国家重点实验室, 南京 210093;2. 南京邮电大学理学院, 信息物理研究中心, 南京 210023;3. 河南工业大学理学院, 郑州 450001
基金项目:国家自然科学基金(批准号:11174132,11474151,U1232210)、国家重点基础研究发展计划(批准号:2011CB922102,2012CB932304)和江苏省普通高校博士生科研创新计划(批准号:CXZZ13_0035)资助的课题.
摘    要:利用溶剂热/热分解的方法合成出微结构可控的γ-Fe_2O_3/NiO核-壳结构纳米花.分析表明NiO壳层是由单晶结构的纳米片构成,这些纳米片不规则地镶嵌在γ-Fe_2O_3核心的表面.Fe3O4/Ni(OH)_2前驱体的煅烧时间对γ-Fe_2O_3/NiO核-壳体系的晶粒生长、NiO相含量和壳层致密度均有很大的影响.振动样品磁强计和超导量子干涉仪的测试分析表明,尺寸效应、NiO相含量和铁磁-反铁磁界面耦合效应是决定γ-Fe_2O_3/NiO核-壳纳米花磁性能的重要因素.随着NiO相含量的增加,磁化强度减小,矫顽力增大.在5 K下,γ-Fe_2O_3/NiO核-壳纳米花表现出一定的交换偏置效应(H_E=46 Oe),这来自于(亚)铁磁性γ-Fe_2O_3和反铁磁性NiO之间的耦合相互作用.与此同时,这种交换耦合效应也进一步提高了样品的矫顽力(H_C=288 Oe).

关 键 词:相含量  分层结构  界面耦合  交换偏置
收稿时间:2016-04-11

Synthesis,microstructure, and magnetic properties of γ-Fe2O3/NiO core/shell nanoflowers
Li Zhi-Wen,He Xue-Min,Yan Shi-Ming,Song Xue-Yin,Qiao Wen,Zhang Xing,Zhong Wei,Du You-Wei. Synthesis,microstructure, and magnetic properties of γ-Fe2O3/NiO core/shell nanoflowers[J]. Acta Physica Sinica, 2016, 65(14): 147101-147101. DOI: 10.7498/aps.65.147101
Authors:Li Zhi-Wen  He Xue-Min  Yan Shi-Ming  Song Xue-Yin  Qiao Wen  Zhang Xing  Zhong Wei  Du You-Wei
Affiliation:1. National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China;2. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;3. College of Science, Henan University of Technology, Zhengzhou 450001, China
Abstract:The main purpose of this work is to explore the influences of microstructures on the magnetic properties, as well as the formation mechanism of γ-Fe2O3/NiO core/shell nanoflowers. The synthesis of nanoflower-like samples includes three processes. Firstly, Fe3O4 nanospheres are synthesized by the solvothermal reaction of FeCl3 dissolved in ethylene glycol and NaAc. Secondly, Fe3O4/Ni(OH)2 core/shell precursor is fabricated by solvothermal method through using the early Fe3O4 spheres and Ni(NO3)2·6H2O in an ethanol solution. Finally, the precursor Fe3O4/Ni(OH)2 is calcined in air at 300 ℃ for 3-6 h, and therefore resulting in γ-Fe2O3/NiO core/shell nanoflowers. Their microstructures are characterized by using XRD, XPS, SEM, HRTEM and SAED techniques. The results show that the final powder samples are γ-Fe2O3/NiO with typical core/shell structure. In this core/shell system, the γ-Fe2O3 sphere acts as core and the NiO acts as shell, which are comprised of many irregular flake-like nanosheets with monocrystalline structure, and these nanosheets are packed together on the surfaces of γ-Fe2O3 spheres. The calcination time of Fe3O4/Ni(OH)2 precursor has significant influences on the grain growth, the NiO content and the compactness of NiO shells in the γ-Fe2O3/NiO core/shell system. VSM and SQUID are used to characterize the magnetic properties of γ-Fe2O3/NiO core/shell nanoflowers. The results indicate that the 3 h-calcined sample displays better ferromagnetic properties (such as higher ms and smaller HC) because of their high γ-Fe2O3 content. In addition, as the coupling interaction between the FM γ-Fe2O3 and AFM NiO components, we observe that the γ-Fe2O3/NiO samples formed in 3 h and 6 h display certain exchange bias (HE=20 and 46 Oe, respectively). Such a coupling effect allows a variety of reversal paths for the spins upon cycling the applied field, and thereby resulting in the enhancement of coercivity (HC(FC)=252 and 288 Oe, respectively). Further, the values of HE and HC for the former are smaller than those of the latter, this is because of the AFM NiO content in 6 h-calcined sample much higher than that in 3 h-calcined sample. Especially, the temperature dependences of the magnetization M of the two samples under both ZFC and FC conditions indicate that an extra anisotropy is induced. In a word, the size effect, NiO phase content, and FM-AFM (where FM denotes the ferromagnetic γ-Fe2O3 component, while AFM is the antiferromagnetic NiO component) interface coupling effect have significant influence on the magnetic properties of γ-Fe2O3/NiO core/shell nanoflowers.
Keywords:phase content  hierarchical structure  interface coupling  exchange bias
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号