首页 | 本学科首页   官方微博 | 高级检索  
     

~(87)Rb玻色-爱因斯坦凝聚体的快速实验制备
引用本文:陈良超,孟增明,王鹏军. ~(87)Rb玻色-爱因斯坦凝聚体的快速实验制备[J]. 物理学报, 2017, 66(8): 83701-083701. DOI: 10.7498/aps.66.083701
作者姓名:陈良超  孟增明  王鹏军
作者单位:1. 山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;2. 山西大学, 极端光学协同创新中心, 太原 030006
基金项目:国家重点基础研究发展计划(批准号:2016YFA0301602)、国家自然科学基金(批准号:11234008,11361161002,11474188)和山西省自然科学基金(批准号:2014011008.2)资助的课题.
摘    要:采用二维磁光阱产生了-个快速~(87)Rb原子流,并在高真空的三维磁光阱中实现了~(87)Rb原子的快速俘获,进一步采用射频蒸发冷却技术实现了原子云的预冷却,然后将原子转移到远失谐的光学偶极阱中蒸发得到了玻色-爱因斯坦凝聚体.实验上可以在25 s内完成三维磁光阱的装载(约1.0×10~(10)个~(87)Rb原子),然后经过16 s的冷却过程最终在光学偶极阱中获得5.0×10~5个原子的玻色-爱因斯坦凝聚体.实验重点研究了二维磁光阱的优化设计和采用蓝失谐大功率光束对四极磁阱零点的堵塞,抑制四极磁阱中原子的马约拉纳损耗,更加有效地对原子云进行预冷却.

关 键 词:二维磁光阱  四极磁阱  马约拉纳损耗  玻色-爱因斯坦凝聚体
收稿时间:2016-10-26

Fast production of 87Rb Bose-Einstein condensates
Chen Liang-Chao,Meng Zeng-Ming,Wang Peng-Jun. Fast production of 87Rb Bose-Einstein condensates[J]. Acta Physica Sinica, 2017, 66(8): 83701-083701. DOI: 10.7498/aps.66.083701
Authors:Chen Liang-Chao  Meng Zeng-Ming  Wang Peng-Jun
Affiliation:1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract:A rapid atomic beam of rubidium (87Rb) is produced by two-dimensional magneto-optical trap (2D MOT), and then trapped by three-dimensional magneto-optical trap (3D MOT) with high vacuum for further cooling. After a process of optical molasses cooling, atoms are reloaded into a magnetic trap, where radio frequency (RF) evaporation cooling is implemented. The precooled atoms in the magnetic trap are then transferred into a far detuning optical dipole trap, where Bose-Einstein condensate (BEC) appears by further evaporation cooling. The 3D MOT is loaded to its maximum within 25 s and then BEC is prepared in 16 s. Due to the linear intensity of magnetic trap, the frequency can be scanned fast in the RF evaporation cooling process. In our experiment, the frequency scans from 39 MHz to 15 MHz in 6 s and then scans to 2 MHz in 5 s. The number of atoms in 3D MOT is about 1×1010, and there are 5×105 atoms in the BEC after a succession of cooling processes. To optimize the performances of 2D MOT, a special light path is constructed. And prisms with high reflectivity are used to reduce the imbalance between opposite propagating cooling +beams. Furthermore, quarter-wave plates are used to keep the polarization state of the cooling beam when reflected by prisms or mirrors. The atoms are cooled to a temperature about 15 μK in the magnetic trap by RF evaporation. In such a low temperature, the loss of magnetic trap (Majorana loss) will prevent the atoms from reaching a high density, and the atoms cannot be cooled further. To reduce the loss rate of the magnetic trap, the far blue detuning light (532 nm, 18 W) is added to plug the zero point of the magnetic trap. In the optically plugged magnetic trap, atoms with high density are cooled down enough, which gives a good start for the loading of optical dipole trap.
Keywords:two-dimensional magneto-optical trap  quadruple magnetic trap  Majorana loss  Bose-Einstein condensates
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号