首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Ge-As-S硫系玻璃的结构与性能调控
引用本文:杨艳,陈云翔,刘永华,芮扬,曹烽燕,杨安平,祖成奎,杨志勇.Ge-As-S硫系玻璃的结构与性能调控[J].物理学报,2016,65(12):127801-127801.
作者姓名:杨艳  陈云翔  刘永华  芮扬  曹烽燕  杨安平  祖成奎  杨志勇
作者单位:1. 江苏师范大学物理与电子工程学院, 江苏省先进激光材料与器件重点实验室, 徐州 221116; 2. 中国建筑材料科学研究总院, 北京 100024
基金项目:国家自然科学基金(批准号: 61205207, 61405080, 61575086)和江苏省大学生创新创业训练计划(批准号: 201410320016Z)资助的课题.
摘    要:制备了系列具有不同化学配比特征的Ge-As-S硫系玻璃,并研究了玻璃的结构、折射率和光学带隙(Eg).Ge-As-S玻璃具有以Ge S_4]四面体和As S_3]三角锥为骨架结构单元相互交联形成的连续网络结构,当S过量时,结构中出现S链或S_8环;当S不足时,结构中形成As_4S_4/As_4S_3分子,甚至出现大量AsAs/Ge-Ge同极键.玻璃的组成元素在2—10μm波段的摩尔折射度分别为R_(Ge)=9.83—10.42 cm~3/mol,RAs=11.72—11.87 cm~3/mol和R_S=7.78—7.86 cm3/mol.Ge-As-S玻璃的折射率与密度和组成元素的摩尔折射度之间存在较好的定量关系,可根据该定量关系在1%偏差内对玻璃的折射率进行预测或调控.提出了采用玻璃粉末的漫反射光谱确定可靠Eg的方法,通过该方法可获得玻璃的强吸收数据用于确定Eg.Ge-As-S玻璃的Eg与玻璃的平均键能之间存在较好的关联,S含量较高的玻璃更倾向于具有较大的平均键能,因此具有较大的Eg.

关 键 词:光学材料  硫系玻璃  拉曼光谱  折射率
收稿时间:2016-02-25

Tailoring structure and property of Ge-As-S chalcogenide glass
Yang Yan,Chen Yun-Xiang,Liu Yong-Hua,Rui Yang,Cao Feng-Yan,Yang An-Ping,Zu Cheng-Kui,Yang Zhi-Yong.Tailoring structure and property of Ge-As-S chalcogenide glass[J].Acta Physica Sinica,2016,65(12):127801-127801.
Authors:Yang Yan  Chen Yun-Xiang  Liu Yong-Hua  Rui Yang  Cao Feng-Yan  Yang An-Ping  Zu Cheng-Kui  Yang Zhi-Yong
Institution:1. Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; 2. China Building Materials Academy, Beijing 100024, China
Abstract:Chalcogenide glass has been considered to be a promising optical material for infrared (IR) transmission and nonlinear optics because of its favorable physical properties such as wide IR transparent windows, high linear and nonlinear refractive indices, and tunable photosensitivity. In many optical designs and practical applications, the refractive index (n) and optical bandgap (Eg) are two important parameters. Aiming to evaluate the composition dependence of the n and Eg in Ge-As-S chalcogenide glasses, a series of glasses with different stoichiometric characteristics are synthesized in quartz tubes under vacuum by the melt quenching technique. The structure, n and Eg of the glass are investigated by Raman spectroscopy, ellipsometry, and diffused reflectance spectroscopy, respectively.To eliminate thermal effects on the measured Raman spectra, the data are corrected by the Bose-Einstein thermal factor. Raman spectrum analyses indicate that Ge-As-S glass has a continuous network structure with interconnected GeS4] tetrahedra and AsS3] pyramids forming the backbone. When S amount is excess, S chains or S8 rings emerge. When S amount is deficient, As4S4/As4S3 molecules are formed, and even a large number of As-As/Ge-Ge homopolar bonds appear in the structure. The n values at different wavelengths are obtained by fitting the ellipsometry data with the Sellmeier dispersion model. The values of molar refractivity (Ri) of Ge, As and S elements are evaluated by using the measured n and density (d) of the investigated glass. The optimal values of Ri at 2-10 μm for each element are RGe=9.83-10.42 cm3/mol, RAs=11.72-11.87 cm3/mol, and RS=7.78-7.86 cm3/mol, respectively; and the values decrease with increasing wavelength. The n of Ge-As-S glass is well quantitatively correlated to the d and the Ri of constituent elements, so that its value can be predicted or tailored within 1% deviation. A method to determine reliable Eg of a glass is proposed based on diffuse reflectance spectrum (DRS) of glass powders. To determine Eg of a glass, the absorption coefficient (α) is required to be as low as ~104 cm-1. For a 1-mm-thick bulk glass, the detection limit of a spectrophotometer is typically α < 100 cm-1. To obtain a reasonable Eg, the sample thickness used for the measurement must be less than 10 μm. Such a thin glass sample is difficult to prepare. In comparison, DRS of glass powers measured using a spectrophotometer is able to provide valid absorption data in a 104 cm-1 range required for Eg determination. In this proposed method, the Kubelka-Munk function F(R), which is proportional to α of the glass, is calculated from the measured DRS on the glass powders. The F(R) is calibrated by using the DRS of a glass (e.g. As2S3) with a known Eg. Using the same F(R) absorbance value, Eg of the Ge-As-S glass is determined based on DRS of powders measured under the same condition. The Eg of Ge-As-S glass is broadly correlated to the average bond energy of the glass. The glass containing more S atoms tends to show a higher average bond energy, and therefore exhibits a larger Eg.
Keywords:optical materials  chalcogenide glasses  Raman spectroscopy  refractive index
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号