首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Master equation approach to vibrational energy transfer between two diatomic molecules
Authors:AJ Makowski  T Orlikowski
Institution:Institute of Physics, Nicholas Copernicus University, 87-100 Toruń, Poland
Abstract:In this paper a semiclassical non-markovian master equation is derived. We begin by using the well-known tetradic form of the Liouville equation for a reduced density operator. By projecting the diagonal matrix elements of the operator, we obtain an infinite-order master equation. This equation is then applied in the lowest-order approximation to collinear collisions between the diatomic molecules: H2H2, N2N2 and Cl2Cl2. With an assumed form of the interaction potential for such a problem we have also derived an analytical expression for the V—V transition probabilities. They are then calculated over a wide range of velocities of the colliding molecules and compared with exact semiclassical ones. An excellent agreement of the results is found for small velocities (i.e. υ ≈ 104 cm/s). For larger values of υ (≈ 105 cm/s) the results obtained from the master equation approach agree with the exact ones only in the low-velocity range for light molecules and low oscillatory states.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号