首页 | 本学科首页   官方微博 | 高级检索  
     


Contra-thermodynamic behavior in intermolecular hydrogen transfer of alkylperoxy radicals.
Authors:Jim Pfaendtner  Linda J Broadbelt
Affiliation:Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3120, USA.
Abstract:Quantum chemical investigation of bimolecular hydrogen transfer involving alkylperoxy radicals, a key reaction family in the free-radical oxidation of hydrocarbons, was performed to establish structure-reactivity relationships. Eight different reactions were investigated featuring four different alkane substrates (methane, ethane, propane and isobutane) and two different alkylperoxy radicals (methylperoxy and iso-propylperoxy). Including forward and reverse pairs, sixteen different activation energies and enthalpies of reaction were used to formulate structure-reactivity relationships to describe this chemistry. We observed that the enthalpy of formation of loosely bound intermediate states has a strong inverse correlation with the overall heat of reaction and that this results in unique contra-thermodynamic behavior such that more exothermic reactions have higher activation barriers. A new structure-reactivity relationship was proposed that fits the calculated data extremely well: E(A)=E(o)+alphaDeltaH(rxn) where alpha=-0.10 for DeltaH(rxn)<0, and alpha=1.10 for DeltaH(rxn)>0 and E(o)=3.05 kcal mol(-1).
Keywords:ab initio calculations  density functional calculations  hydrogen bonds  hydrogen transfer  radicals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号