首页 | 本学科首页   官方微博 | 高级检索  
     


An asymptotic decomposition for multivariate distribution-free tests of independence
Authors:Paul Deheuvels
Affiliation:1. Université Paris VI Paris, France;2. Ecole Pratique des Hautes Etudes, Paris, France
Abstract:In the multivariate case, the empirical dependence function, defined as the empirical distribution function with reduced uniform margins on the unit interval, can be shown for an i.i.d. sequence to converge weakly in an asymptotic way to a limiting Gaussian process. The main result of this paper is that this limiting process can be canonically separated into a finite set of independent Gaussian processes, enabling one to test the existence of dependence relationships within each subset of coordinates independently (in an asymptotic way) of what occurs in the other subsets. As an application we derive the Karhunen-Loeve expansions of the corresponding processes and give the limiting distribution of the multivariate Cramer-Von Mises test of independence, generalizing results of Blum, Kiefer, Rosenblatt, and Dugué. Other extensions are mentioned, including a generalization of Kendall's τ.
Keywords:62G10  60E10  60G15  62E20  62H10  Nonparametric methods  tests of independence  distribution-free procedures  rank statistics  empirical measures  Cramer-Von Mises statistics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号