首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical validation of classification and calibration models using bootstrapped Latin partitions
Authors:Peter de Boves Harrington  
Affiliation:

aOhio University Center for Intelligent Chemical Instrumentation, Department of Chemistry & Biochemistry Athens, OH 45701-2979, USA

Abstract:Unbiased evaluation of classification and calibration methods is important, especially as these methods are applied to increasingly complex data sets that are under-determined. Precision bounds, such as confidence intervals, are required for interpreting any experimental result. Using bootstrapped Latin partitions to evaluate classification and calibration models, bounds on the average predictions were obtained. These bounds characterize sources of variation attributed to building the model and the composition of the training set with respect to the test set. Furthermore, precision bounds on the average of the model-variable loadings allow the significance of characteristic features to be estimated. The procedure for bootstrapped Latin partitions is given and demonstrated with synthetic data sets for classification using linear discriminant analysis and fuzzy rule-building expert systems, and for calibration using partial least squares regression with one and three properties. All analyses were implemented on a personal computer with the longest evaluation requiring 6-h processing time. Analysis of variance and matched sample t-tests were also used to demonstrate the statistical power of these tests.
Keywords:Bootstrap   Classification   Confidence interval   Latin partition   Prediction   Validation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号