首页 | 本学科首页   官方微博 | 高级检索  
     检索      


PHOTOPHYSICAL PROPERTIES OF PHYCOBILIPROTEINS FROM PHYCOBILISOMES: FLUORESCENCE LIFETIMES, QUANTUM YIELDS, AND POLARIZATION SPECTRA
Authors:Jozef  Grabowski Elisabeth  Gantt ‡
Institution:Radiation Biology Laboratory, Smithsonian Institution, 12441 Parklawn Drive, Rockville, MD 20852, U.S.A.
Abstract:Abstract— Absorption and fluorescence polarization spectra, as well as absolute fluorescence quantum yields, and lifetimes of phycobiliproteins separated from intact phycobilisomes of Porphyridium cruentum, Nostoc sp. and Fremyella diplosiphon were measured. Two different types of phycoerythrin, in addition to phycocyanin and allophycocyanin, were separated from both Porphyridium cruentum and Nostoc sp. phycobilisomes. They were distinguishable by the shape of their absorption spectra, values of fluorescence quantum yields and their limiting polarization. Phycobilisomes of Fremyella diplosiphon had a type of phycoerythrin that was different from the above kinds. By the use of fluorescence quantum yields and lifetime data, the values of natural lifetimes, the decadic molar extinction coefficients, as well as Förster's critical distances R 0 for excitation energy transfer, between phycobiliproteins in phycobilisomes, were estimated. The values obtained of Förster's critical distances indicate that for most efficient energy transfer from phycoerythrin to allophycocyanin, the outer layers of Porphyridium cruentum and Nostoc sp. phycobilisomes should be composed of bangiophycean, phycoerythrin and cyanophytan phycoerythrin-II respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号