首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Catalytic reductive alkylation of secondary amine with aldehyde and silane by an iridium compound
Authors:Mizuta Tomoya  Sakaguchi Satoshi  Ishii Yasutaka
Institution:Department of Applied Chemistry, Faculty of Engineering & High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan.
Abstract:reaction: see text] An efficient methodology for the reductive alkylation of secondary amine with aldehyde and Et(3)SiH using an iridium complex as a catalyst has been developed. For example, treatment of dibutylamine with butyraldehyde and Et(3)SiH (a 1:1:1 molar amount of amine, aldehyde, and silane) in 1,4-dioxane at 75 degrees C under the influence of a catalytic amount of IrCl(cod)](2) gave tributylamine in quantitative yield. In this reaction, no reduction of aldehyde took place. It was found that IrCl(3), which is a starting material for preparation of iridium complexes such as IrCl(cod)](2), acts as an efficient catalyst for the present reductive alkylation of amine. In addition, a cheaper, easy-to-handle, and environmentally friendly reducing reagent such as polymethylhydrosiloxane (PMHS) in place of Et(3)SiH was also useful. Thus, a variety of secondary amines could be alkylated by allowing them to react with aldehydes and PMHS in the presence of an iridium catalyst to afford the corresponding tertiary amines in good to excellent yields. From the deuterium label experiments, it was revealed that silane and water, generated during the formation of enamine by the reaction of amine and aldehyde, seem to behave as a hydrogen source. The catalytic cycle was discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号