首页 | 本学科首页   官方微博 | 高级检索  
     检索      


REC A +-DEPENDENT SYNERGISM BETWEEN 365 NM AND IONIZING RADIATION IN LOG-PHASE ESCHERICHIA COLI: A MODEL FOR OXYGEN-DEPENDENT NEAR-UV INACTIVATION BY DISRUPTION OF DNA REPAIR
Authors:Rex M  Tyrrell
Institution:M.R.C. Cyclotron Unit, Hammersmith Hospital, Ducane Road, London, W.12 OHS, England
Abstract:Abstract —The oxygen dependence of 365 nm inactivation of colony-forming ability of Escherichia coli has been investigated in two series of DNA repair-deficient K12 mutants grown to mid-exponential phase. All strains except a uvr A rec A double mutant are more sensitive to inactivation under O2 and show a lower threshold dose. The inactivation of photoreactivating enzyme in a crude cell extract and DNA repair disruption are both reduced when irradiation is carried out under nitrogen. The rec A gene-dependent synergism between 365 nm and ionising radiation is reversible if cells are incubated in full growth medium before ionising radiation treatment. In a wildtype strain, incubation for 2.5 h in full growth medium after 106 J m-2 365 nm radiation changes a sensitised response to a protection from ionising radiation. Protection is not seen at 1.5 times 106 J m-2. A tentative model for near UV lethality in logarithmic phase cells is suggested which proposes two classes of lesions. One requires oxygen for it's induction, is rapidly fixed as a lethal event as a result of repair disruption, and is primarily responsible for cell death after aerobic 365 nm irradiation. The other lesion, possibly pyrimidine dimers, may lead to cell death under anaerobic conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号