首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nanometer-size cluster formation in alkali-metal-doped fullerene layers
Authors:Touzik A  Hermann H  Wetzig K
Institution:Institute for Solid State and Materials Research Dresden, P.O. Box 270116, D-01171 Dresden, Germany. a.touzik@ifw-dresden.de
Abstract:Kinetic Monte Carlo methods have been used to simulate structural transformations in fullerene layers during electrochemical intercalation with alkali-metal ions (A). Special attention is paid to the thermodynamic stability of the A(x)C(60) phases. The calculations point out a phase separation in the doped fullerene layer into alkali-metal-rich and alkali-metal-depleted areas at room temperature. The final state is represented by two phases which coexist as a stable fine mixture of nanoscale particles. The instability of homogeneous layers has potentially critical impact on their electrical properties and can explain the formation of nanostructures (20-50 nm) at the fullerene-electrolyte interface. Rb(3)C(60) clusters are predicted to be larger than K(3)C(60) ones for equal mean alkali-metal concentrations. Experimental data on electrochemical metal deposition on alkali-metal-doped fullerene substrates-in particular, atomic force microscopy measurements-are also consistent with the model proposed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号