首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Valence band studies of clean and oxygen exposed GaAs(100) surfaces
Authors:P Pianetta  I Lindau  PE Gregory  CM Garner  WE Spicer
Institution:Stanford Electronics Laboratories and Stanford Synchrotron Radiation Project, Stanford University, Stanford, California 94305, USA
Abstract:We found, by correlating band bending, ultraviolet photoemission spectroscopy, and partial yield spectroscopy measurements, that Fermi level pinning at midgap of n-type GaAs(110) is caused by extrinsic states. The exact nature of these states is not yet clear, but the surfaces with Fermi level pinning were strained as evidence by a smeared valence band emission. This smearing was removed by as little as one oxygen per 104 to 105 surface atoms. This implies that the oxygen has very long range effects in causing spontanesous but small rearrangement of the surface lattice and removing surface strains. When about 5% of a monolayer of oxygen is adsorbed, a major change in the electronic structure takes place. Again, the oxygen coverage is very small, which suggests long range effects now leading to a fairly large rearrrangement of the surface lattice. Finally, from comparing the oxygen induced emission for exposures greater than 107 L O2, with the spectra from gas photoemission measurements on molecular oxygen, we suggest that the oxygen is chemisorbed as a molecule on the (110) surface of GaAs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号