首页 | 本学科首页   官方微博 | 高级检索  
     


Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes
Affiliation:1. Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, PO Box 14965/161, Tehran, Iran;2. Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, PO Box 14965/161, Tehran, Iran;1. NEST, Scuola Normale Superiore, and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy;2. MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand;3. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa, Italy;1. Yerevan State University, Faculty of Physics, Department of Solid State Physics, 1 Al. Manoogian, Yerevan 0025, Armenia;2. State Engineering University of Armenia, 105, V. Teryan, Yerevan 0009, Armenia;1. Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany;2. Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia;3. Ioffe Physico-Technical Institute, St. Petersburg 194021, Russia
Abstract:
In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.
Keywords:Colorimetric detection  DNA  Gold nanoparticles  L-shaped probes  Length of probe
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号