Reprint of : Quantum point contacts as heat engines |
| |
Affiliation: | 1. Kantonsschule Frauenfeld, Ringstrasse 10, CH-8500 Frauenfeld, Switzerland;2. Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain;1. Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;2. Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany;1. Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy;2. Nano-Bio Spectroscopy Group, Departamento de Fìsica de Materiales, Universidad del Paìs Vasco UPV/EHU, E-20018 San Sebastiàn, Spain;1. Univ. Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble, France;2. CEA, INAC-SPSMS, F-38000 Grenoble, France;3. Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA;4. Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, NL-2628 CJ, Delft, The Netherlands;1. Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland;2. Jožef Stefan Institute, Ljubljana, Slovenia;3. Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia |
| |
Abstract: | The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's maximum value during a short measurement time. We illustrate this effect using a quantum point contact as a heat engine. When a temperature difference is applied to a quantum point contact, the system may be utilized as a source of electrical power under steady state conditions. We first discuss the optimal working point of such a heat engine that maximizes the generated electrical power and subsequently calculate the statistics for deviations of the efficiency from its most likely value. We find that deviations surpassing the Carnot limit are possible, but unlikely. |
| |
Keywords: | Mesoscopic physics Quantum transport Noise and fluctuations Quantum thermodynamics |
本文献已被 ScienceDirect 等数据库收录! |
|