首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of dielectric and electrical behaviour of nanocrystalline Zn1−xMnxO (x=0 to 0.10) semiconductors synthesized by mechanical alloying
Institution:1. Department of Physics, National Institute of Technology, Durgapur 713209, West Bengal, India;2. Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India;1. School of Physical Electronics, Joint Laboratory for Police Equipment Research, University of Electronic Science and Technology of China, Chengdu 610054, PR China;2. School of Physics and Mech-tronic Engineering, Sichuan University of Arts and Science, Dazhou 635000, PR China;1. Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2;2. Department of Physics/Theoretical Physics, University of Oulu, Oulu FIN-90014, Finland;1. Department of Applied Physics, University for Development Studies, Navrongo, Ghana;2. Department of Physics, College of Agriculture and Natural Sciences, U.C.C., Ghana;3. Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C., Ghana;1. Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova;2. Institute of Applied Physics, Moldavian Academy of Science, Chisinau MD-2028, Republic of Moldova;3. Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea;1. Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia;2. National University of Architecture and Construction of Armenia, Teryan 105, 0009 Yerevan, Armenia;3. Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile;4. SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
Abstract:The results on the measurement of electric and dielectric behaviour and capacitance–voltage characteristics of Zn1−xMnxO (x=0 to 0.10) nanocrystalline semiconductors are reported. Direct current conductivity increases with the increase Mn concentration and its thermal behavior can be explained by adiabatic polaronic hopping model. The alternating current conductivity obeys a power law of temperature and frequency. The temperature exponent p strongly depends on Mn concentration. The temperature dependence of frequency exponent s suggests that the overlapping large polaron conduction model is the appropriate conduction mechanism for the investigated samples. The interfacial boundaries and grain contribution to the dielectric properties can be identified by the analysis of complex impedance. Relaxation behaviour of the samples can be explained from the analysis of the electric modulus. Formation of Schottky diode can be described from capacitance–voltage characteristic of the samples and different diode parameters can be extracted from it.
Keywords:Nanostructures  Ball-milling  X-ray diffraction  Electrical properties  Dielectric permittivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号