首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crystallographic B-factors highlight energetic frustration in aldolase folding
Authors:Rao Maithreyi K  Chapman Tracy R  Finke John M
Institution:Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA.
Abstract:Kinetic simulations of the folding and unfolding of the mammalian TIM barrel protein aldolase were conducted to determine if a minimalist monomeric Gō model, using the native structure to determine attractive energies in the protein chain, could capture the experimentally determined folding pathway. The folding order, that is, the order in which different secondary structures fold, between the Gō model simulations and that from hydrogen-deuterium exchange experiments, did not agree. To explain this discrepancy, two alternate variant of the basic Gō model were simulated: (1) a monomer Gō model with native contact energies weighted by a statistical potential (SP model) and (2) a monomer Gō model with native contact energies inversely weighted by crystallographic B factors (B model). The B model demonstrated the best agreement between simulation and experiments. The success of the B model is attributed to the ability of B factors to highlight local energetic frustration in the aldolase structure which results in weaker native contacts in these frustrated regions. The predictive success of the B model also reveals the potential use of B factor information for energetic weighting in general protein modeling.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号