首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pt–NiCo Nanostructures with Facilitated Electrocatalytic Activities for Sensitive Determination of Intracellular Thiols with Long‐Term Stability
Authors:Feng Zhang  Dr Ming Wen  Mingzhu Cheng  Di Liu  Anwei Zhu  Prof Yang Tian
Institution:Department of Chemistry, Tongji University, Shanghai 200092 (P.R. China), Fax: (+86)?21‐6598‐1097
Abstract:A Pt–NiCo nanomaterial has been synthesized for developing the sensitive electrochemical determination of biological thiols that include L ‐cysteine (CySH), homocysteine (HCySH), and gluthione (GSH) with high sensitivity and long‐term stability, in which the Pt nanoparticles are well supported on amorphous NiCo nanofilms. The electrochemical oxidation of thiols has been successfully facilitated on the optimized Pt–NiCo nanostructures, that is, two oxidation peaks of CySH have been clearly observed at potentials of +0.06 and +0.45 V. The experimental results demonstrate that the first peak for CySH oxidation may be attributed to a direct oxidation from CySH to L ‐cystine (CySSCy), whereas the second peak possibly results from a sequential oxidation from CySSCy to cysteic acid (CySO3H), together with a direct oxidation of CySH into CySO3H. The enhanced electrocatalytic activities at the Pt23–NiCo nanostructures have provided a methodology to determine thiols at a very low potential of 0.0 V with relatively high sensitivity (637 nA μM cm?2), a low detection limit (20 nM ), and a broad linear range. The striking analytical performance, together with the characteristic properties of the Pt–NiCo nanomaterial itself, including long‐term stability and strong antipoisoning ability, has established a reliable and durable approach for the detection of thiols in liver cancer cells, Hep G2.
Keywords:analytical methods  cell recognition  electrochemistry  nanostructures  thiols
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号