首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reactivity of substituted copper(II) salicylates with tert‐butylperoxyl radical: Structure–reactivity relationships
Authors:Levon A Tavadyan  Seyran H Minasyan  Makich V Musaelyan  Lusik H Harutyunyan  Hakob G Tonikyan  John R J Sorenson
Institution:1. Institute of Chemical Physics, National Academy of Science, Republic of Armenia, 5/2 Sevak Street, Yerevan 0014, Armenia;2. Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205‐7122
Abstract:Absolute rate constants (keff) for the chemical reactions of Cu(II)2(3,5‐di‐iso‐propylsalicylate)4(H2O)3, Cu(II)2(3,5‐di‐tert‐butylsalicylate)4, Cu(II)2(3,5‐di‐tert‐butylsalicylate)4(H2O)4, Cu(II)2(3,5‐dimethylsalicylate)4(H2O)3, Cu(II)2(3‐ethylsalicylate)4(H2O), Cu(II)2(3‐phenylsalicylate)4, and Cu(II)(3,5‐di‐iso‐propylsalicylate)2(pyridine)2 with tert‐butylperoxyl radical were determined using kinetic electron paramagnetic resonance measurements in 10% toluene in the hexane medium at temperatures ranging from ?63°C to 2°C. These antioxidant (AO) chelates were ranked by their reactivity as follows: 2,6‐di‐tert‐butyl‐4‐methylphenol ? Cu(II)2(3,5‐di‐tert‐butylsalicylate)4 ? Cu(II)2(3‐phenylsalicylate)4 > Cu(II)2(3,5‐di‐iso‐propylsalicylate)4(H2O)3 ? Cu(II)2(3,5‐di‐tert‐butylsalicylate)4(H2O)4 ? Cu(II)2(3,5‐dimethylsalicylate)4(H2O)3 > Cu(II)2(3‐ethylsalicylate)4(H2O) ? Cu(II)(3,5‐di‐iso‐propylsalicylate)2(pyridine)2 at 20°C. Differential pulse voltammetry was used to determine redox behavior of these chelates in CH2Cl2. Two types of salicylic OH groups were detected in these Cu(II) salicylates, characterized by the presence or absence of AO reactivity. One of them was coordinate covalently bonded to Cu(II) via the oxygen atoms of the salicylic OH groups, displaying oxidation peak potentials in the range from +650 to 970 mV versus Ag/Ag+. The second type was intramolecularly hydrogen bonded to carboxylate oxygens, with an oxidation peak potential in the range from +1100 to 1200 mV versus Ag/Ag+. It was concluded that non–hydrogen‐bonded salicylic OH groups are responsible for the antiperoxyl radical reactivity of these chelates, while neither Cu(II) nor salicylate ligands displayed reactivity with peroxyl radical. It has been established in this research that axially bonded electron pair donors such as pyridine and water decrease H‐donating reactivity of Cu(II) salicylates by promoting the formation of intramolecular hydrogen bonding between the salicylic OH hydrogen atoms and carboxylate oxygen atoms in the salicylic ligands. Dependences of log keff at 20°C and the anodic oxidation potential (Epa) for the salicylic OH group on the difference between symmetric and asymmetric stretching frequencies of carboxylate groups (in Fourier transform infrared spectra) for the substituted Cu(II) salicylates were determined. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 56–67, 2010
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号