首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced and tunable oxygen carrier and amperometric sensor based on a glassy carbon electrode assembly of a hemoglobin-chitosan-Fe3O4 composite
Authors:Yuanhong?Wang,Fang?Zhang,Chunmei?Yu,Yifeng?Tu,Peng?Miao  author-information"  >  author-information__contact u-icon-before"  >  mailto:miaopeng@sibet.ac.cn"   title="  miaopeng@sibet.ac.cn"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Haiying?Gu  author-information"  >  author-information__contact u-icon-before"  >  mailto:hygu@ntu.edu.cn"   title="  hygu@ntu.edu.cn"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:1.School of Public Health, Center of Analysis and Testing, Institute of Analytical Chemistry for Life Science,Nantong University,Nantong,People’s Republic of China;2.Institute of Analytical Chemistry,Soochow University,Suzhou,People’s Republic of China;3.Suzhou Institute of Biomedical Engineering and Technology,Chinese Academy of Sciences,Suzhou,People’s Republic of China
Abstract:The authors have prepared organized assemblies of a hemoglobin-chitosan(CS)@Fe3O4 composite on glassy carbon electrodes (GCEs) via three strategies with the aim of preparing tunable Hb-coated GCEs with good stability and long-term oxygen storage capability. The formation and morphology of the Hb-CS@Fe3O4 composite was characterized by scanning electrochemical microscopy, XRD and UV–vis spectroscopy. It is shown that Hb is fully integrated into the CS@Fe3O4 and can be manipulated by a magnetic field whilst maintaining its biological activity. In the absence of oxygen, a surface-controlled electrode process occurs with an interfacial electron transfer rate (k s) of 2.14 s?1. The modified GCE also has a favorable oxygen storage lifetime (almost 6 h). One Hb-CS@Fe3O4 film on the electrode displays particularly good electrocatalytic reduction activity towards oxygen. The linear range for detection of O2 is 1.2?×?10?7?~?2.0?×?10?4 mol L?1 with a detection limit of 4.0?×?10?8 mol L?1. In our opinion, this method has great potential in terms of enhanced oxygen storage capability of Hb, which can be applied in special situations such as space operations, down hole mining, mountaineering and diving.
Graphical Abstract Hb-CS@Fe3O4 composites were prepared by three strategies, and oxygen carrying capability was studied. The corresponding modified electrode constructed on the basis of the magnetic field environment was superior in terms of stability, sensitivity and O2 storage time, showing wider linear range and lower detection limit.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号