首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Melting entropy of nanocrystals: an approach from statistical physics
Authors:Safaei A  Attarian Shandiz M
Institution:Institute of Nano-Parthava, Mashhad, Iran. ali.safaiy@gmail.com
Abstract:Considering size effect on the equations obtained from statistical mechanical theories for the entropy of crystal and liquid phases, a new model has been developed for the melting entropy of nanocrystals, including the effects of the quasi-harmonic, anharmonic and electronic components of the overall melting entropy. Then with the use of our suggested new proportionality between the melting point and the entropy temperature (θ(0)), the melting entropy of nanocrystals has been obtained in terms of their melting point. Moreover, for the first time, the size-dependency of the electronic component of the overall melting entropy, arising from the change in the electronic ground-state of the nanocrystal upon melting, has been taken into account to calculate the melting entropy of nanocrystals. Through neglecting the effect of the electronic component, the present model can corroborate the previous model for size-dependent melting entropy of crystals represented by Jiang and Shi. The present model has been validated by the available computer simulation results for Ag and V nanoparticles. Moreover, a fairly constant function has been introduced which couples the melting temperature, the entropy temperature and the atomic density of elements to each other.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号